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Abstract

Background: In meta-analyses (MA), effect estimates that are pooled together will often be heterogeneous.
Determining how substantial heterogeneity is is an important aspect of MA.

Method: We consider how best to quantify heterogeneity in the context of individual participant data meta-analysis
(IPD-MA) of binary data. Both two- and one-stage approaches are evaluated via simulation study. We consider
conventional I2 and R2 statistics estimated via a two-stage approach and R2 estimated via a one-stage approach. We
propose a simulation-based intraclass correlation coefficient (ICC) adapted from Goldstein et al. to estimate the I2,
from the one-stage approach.

Results: Results show that when there is no effect modification, the estimated I2 from the two-stage model is
underestimated, while in the one-stage model, it is overestimated. In the presence of effect modification, the
estimated I2 from the one-stage model has better performance than that from the two-stage model when the
prevalence of the outcome is high. The I2 from the two-stage model is less sensitive to the strength of effect
modification when the number of studies is large and prevalence is low.

Conclusions: The simulation-based I2 based on a one-stage approach has better performance than the conventional
I2 based on a two-stage approach when there is strong effect modification with high prevalence.

Keywords: Individual participant datameta-analysis (IPD-MA), Heterogeneity, Two-stage and one-stage approaches, I2

Background
Meta-analysis (MA) is a statistical method used to draw an
overall conclusion based on the total evidence by review-
ing previous research work systematically and pooling
effect estimates together [1]. MA is an important tool,
widely used, and applied in evidence-based medicine [2].
Individual participant data meta-analyses (IPD-MA),

collect line by line participant data from each included
study, rather than estimates of the parameter of inter-
est. IPD-MA offer several advantages over aggregate data
MA (AD-MA) and are considered the gold standard in
meta-analytic techniques [3].
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Heterogeneity of effect estimates is an important con-
sideration in both AD-MA and IPD-MA. Heterogeneity
exists if the true effects vary across studies more than
would be expected by chance alone. The estimated inter-
study variance (τ 2) of the parameter of interest is the
most direct measure of heterogeneity, but interpretation,
particularly deciding what might be a problematic level
of heterogeneity, is difficult, despite some practical sug-
gestions [4]. The I2, originally proposed by Higgins and
Thompson, meets three important criteria for any mea-
sure of heterogeneity: it monotonically increases with
between-study variance; it is not varied by changing the
scale; and it is not affected by the number of studies [5].
Importantly, despite some limitations [4], the I2 remains
the most often reported measure of heterogeneity and is
easily interpretable, appealing to clinicians.
There are two approaches to analyze the data from IPD-

MA: the two-stage approach and the one-stage approach.
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In the two-stage approach, each study is analyzed sepa-
rately, then standardmeta-analytic techniques are applied,
and heterogeneity may be quantified by usual methods.
Alternatively, in the one-stage approach, a mixed model is
fit and the data is analyzed altogether, accounting for the
correlation that may exist between subjects in the same
study and allowing the estimated effect to vary across
studies. A review of statistical methods used in IPD-MA
of binary outcomes found that most do not report any
measure of heterogeneity [6]. While some measures of
heterogeneity are easily obtained from a one-stage model,
the I2 is not. Our objective in this work was to con-
sider various approaches to quantifying heterogeneity in
IPD-MA of binary outcomes analyzed via the one-stage
approach. We propose a method to obtain an I2 from
a one-stage model and evaluate it and other possible
measures via simulation study.

Metrics of heterogeneity in IPD-MA with binary outcomes
In this section, we describe various measures of hetero-
geneity that may be used. Here, we consider that the
primary analysis is a one-stage analysis of IPD-MA of
dichotomous outcome data. Below, we describe four pos-
sible measures of heterogeneity: (1) the conventional I2
from the corresponding two-stage analysis; (2) the R from
the corresponding two-stage analysis; (3) a new metric:
the I2 from the one-stage approach; and (4) the R from the
one-stage approach.

Between-study variance (τ2)
The between-study variance, τ 2, quantifies the hetero-
geneity in IPD-MA directly. A large value of τ̂ 2 indicates
that heterogeneity exists among the studies. However, the
τ 2 is not ideal, since interpretation is difficult: there is no
standard criteria to determine the level of heterogeneity
(low, moderate, substantial), because the range is from 0
to∞ [5, 7]. All other approaches to quantify heterogeneity
rely on τ 2.
We might estimate the τ 2 via the two-stage or the

one-stage approach. For the two-stage approach, we esti-
mate τ 2two−stage via the method described by DerSimonian,
Laird, and Whitehead [7–9]:

τ̂ 2 = max

⎛
⎜⎝ Q − (N − 1)

∑N
i=1 ω̂i −

∑N
i=1 ω̂2

i∑N
i=1 ω̂i

, 0

⎞
⎟⎠ (1)

whereN is the number studies, ω̂i is the reciprocal of esti-
mated within-study variance, and Q represents Cochran’s
heterogeneity statistic [5, 10, 11].
A two-stage analysis proceeds as follows. Consider a

MA of a binary outcome inN studies. In the first stage, we
fit the logistic regressions in each of the N studies:

yj ∼ Bernoulli(pj)

logit(pj) = β0 + β1xj (2)
where pj is the true response probability for the positive
result of the jth individual in this study, β0 represents
the intercept, and xj indicates their treatment status. This
model could be expanded to include effect modifiers.
In the first stage, we obtain β̂1i the estimated log odds

ratio in study i for i = 1, 2, ..,N [12], and the variance of
the estimated log odds ratio (var(β̂1i)) for each one of the
N studies.
In the second stage, we consider:

β̂1i ∼ Normal
(
β1, τ 2β1 + var(β̂1i)

)
(3)

where τ 2β1 (τ 2two−stage) represents the respective degree of
heterogeneity between studies [12]. Here, we assume the
covariance between the parameter estimates (β0i and β1i)
are equal to 0, which means that we pool the treatment-
outcome associations (β1i) together [12]. This is similar to
the classic DerSimonian and Laird random-effects model
[8, 13] and allows us to obtain an estimate of the between-
study variance τ 2two−stage [12], as in Eq. 1.
For the one-stage approach, with binary data, we may

estimate the τ 2one−stage from a generalized linear mixed
model (GLMM) [14–16]. Under the one-stage random-
effects model, for each study, a study-specific intercept
and treatment effect may be estimated. The study-specific
intercept and treatment effects are assumed to come from
a bivariate normal distribution [3, 17, 18]. Considering
again a MA of a binary outcome in N studies:

yij ∼ Bernoulli(pij)

logit(pij) = (β0 + μ0i) + (β1 + μ1i)xij (4)
[

μ0i
μ1i

]
∼ MVN

([
0
0

]
,
[

τ 20 ρτ0τ1
ρτ0τ1 τ 21

])
(5)

where pij represents the true response probability for the
positive result of the jth individual in the ith study and
xij indicates their treatment status. β1 is the parameter of
interest, which represents the pooled log odds ratio, and
τ 21 is the between-study variance (τ 2one−stage).

I2 statistic
Using a two-stage approach, consider a MA of N studies
for the parameter of interest, called θ . Under the assump-
tion that the estimated sampling variances are known and
equal for all studies (σ 2

1 = σ 2
2 = σ 2

3 = ... = σ 2
N = σ 2 =

1/ωi), Higgins and Thompson [5] defined a measurement
function I2 for quantifying the unexplained heterogene-
ity, where E(θi) = θ ,V (θi) = τ 2,E(θ̂i|θi) = θi, and
V (θ̂i|θi) = σ 2.
They proposed to estimate I2two−stage as [5]:

Î2 = τ̂ 2

τ̂ 2 + σ̂ 2 (6)
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where

σ̂ 2 = N − 1
∑N

i=1 ω̂i −
∑N

i=1 ω̂2
i∑N

i=1 ω̂i

. (7)

While the I2 is usually presented as a percentage varying
from 0 to 100%, we present it as a proportion varying from
0 to 1.
In clustered data analyses, the I2 is very similar to the

intraclass correlation coefficient (ICC) [5, 19]. The ICC
is the ratio of the between-cluster variance to the total
variance in the outcome [20]. It provides a quantitative
measure of the amount of heterogeneity across clusters
[14]. With binary data, estimating the ICC from a GLMM
is possible, though more complicated [14–16]. Several
measures have been proposed as estimators of the ICC for
binary data [14, 21, 22], though none have been evaluated
as measures of inter-study heterogeneity for IPD-MA.
Goldstein et al. proposed a simulation-based approach
that relies on partitioning the variation in the multilevel
model to estimate an ICC for binary outcomes [22]. We
propose to adapt this ICC estimator to estimate the I2 in a
one-stage IPD-MA. The algorithm is as follows:

Step 1 Fit a random effects model to the data by using
a GLMM, and adjust for possible effect modifiers if
desired.

Step 2 Simulate a large number (e.g.m = 5000) of values
from a normal distribution (e.g. Eq. 5), using the esti-
mated covariancematrix from themultilevel random
effect logistic regression fitted in Step 1. We denote
these as μ0,ij,μ1,ij.

Step 3 Using the fitted model from Step 1, we estimate
the log odds ratio for each subject (ν1,ij = β̂1 + μ1,ij)
in the dataset, and then estimate the variance as ν1 =
V (ν1,ij).

Step 4 Estimate pij by using the fitted model (from Step 1)
and simulated random effect values (from Step 2).

• replacing (μ0i, μ1i) by (μ0,ij,μ1,ij) for each
subject

• plugging in the fixed effect estimator from the
fitted model and the covariates from the dataset

• taking the inverse logit, we obtain the p̂ij for
each individual

Step 5 Using the results from Step 4, it is easy to deduce
the variance of the estimated log odds ratio via the
Delta method, ν2,ij = 1

np̂ij(1−p̂ij) , where n is the aver-
age number of subjects among all of the studies.
Finally, we obtain ν2 = E(ν2,ij).

Step 6 The I2one-stage is now estimated as

Î2 = ν1
ν1 + ν2

. (8)

R statistic
The R statistic is the square root of the ratio of the vari-
ance of the summary statistic from the random-effects
model divided by the variance of the summary statistic
from the fixed-effects model. It quantifies the inflation of
the confidence interval in the presence of inter-study het-
erogeneity [5]. If the estimated value of R is close to 1,
then inference from the random- and fixed-effects mod-
els are similar [5]. However, unexplained between-study
heterogeneity may exist when the estimate of R is greater
than 1. Interpretation of R is difficult, for the same reasons
as for τ 2.
For the two-stage approach, we may estimate Rtwo−stage

as

R̂ = se(β̂1R)

se(β̂1F)
(9)

where se(β̂1F) is the standard error of the estimated
pooled log odds ratio in the fixed-effects model and
se(β̂1R) is the standard error of the estimated pooled log
odds ratio in the random-effects model (Eq. 3).
For the one-stage approach, we may fit a GLMM with

random intercept and fixed slope. The standard error of
the estimated β1 (pooled log odds ratio) from that model
with fixed intercept may be denoted as se(β̂1F). We denote
the standard error of the estimated β1 from model 4 as
se(β̂1R). The estimated Rone−stage from a one-stage model
may then be estimated using Eq. 9.

Methods
We use simulations to investigate the performance of (i)
conventional I2 and R2 based on a two-stage approach
and (ii) simulation-based I2 and R2 based on a one-stage
approach. We generated datasets that consisted of three
variables: the binary treatment status, a binary effect mod-
ifier, and a binary outcome. Each combination of data gen-
eration parameters was used to generate 1000 datasets.
We considered 84 distinct data generation scenarios
(see Table 1).

Data generation details
The treatment variable is the covariate of primary interest
in the IPD-MA; the effect modifier changes the effect of
treatment on the outcome when present.

The number of studies and subjects
The number of studies in each dataset was given byN and
was set to 15 or 30. The number of the subjects within
each study (ni, i = 1, ...,N) followed a log-normal distri-
bution, LN(σ 2

lg = 1.52, κ = 10), that was truncated at
20 and 2000 (to avoid very small and large studies), and
rounded to the nearest integer value.
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Table 1 Parameter values for generating datasets

Parameter Value

The number of studies (N) 15, 30

Prevalence (ppre) 0.3, 0.7

True between-study variance (τ 2) 0.5, 1, 1.5

No effect modification (βw , βxw ) (0, 0)

With weak effect modification (βw , βxw ) (1, 1)

With moderate effect modification (βw , βxw ) (1, 3)

With moderate effect modification (βw , βxw ) (2, 1)

With moderate effect modification (βw , βxw ) (2, 3)

With strong effect modification (βw , βxw ) (1, 5)

With strong effect modification (βw , βxw ) (2, 5)

Treatment status
The prevalence of treatment for each study was gener-
ated from a uniform distribution, pxi ∼ U(θlower =
0.4, θupper = 0.6). Using these study specific treat-
ment prevalences, we generated ni random variables
from a Bernoulli distribution for each subject, as xij ∼
Bernoulli(pxi). These xij represented the treatment status
of subject j in study i.

Effect modifier
We generated a binary effect modifier. First, N study-
specific effect modifier prevalences were generated as
pwi ∼ Uniform(θwlower = 0.1, θwupper = 0.9). Then, using
these probabilities, we obtained the effect modifiers from
the Bernoulli distributions, wij ∼ Bernoulli(pwi).

Outcomes
We generated the outcome yij based on the generated val-
ues of the treatment and effect modifier, as well as the
regression coefficients that described the association of
each of these with the binary outcome, using the following
equation:

logit(pij) = β0+μ0,i+(β1+μ1,i)xij+βwwij+βxwxijwij.
(10)

β0, the fixed intercept, was set based on the given value
of prevalence ppre, where β0 = log

(
ppre

1−ppre

)
. The preva-

lence (ppre) was set at 0.3 or 0.7. The random intercepts for
individuals within each study were μ0,i ∼ Normal(0, σ 2

μ0),
where σ 2

μ0 was given. The true pooled treatment effect
was β1. Furthermore, μ1,i was the study-specific random
effect for the slope, which followed a normal distribu-
tion with zero mean and variance τ 2. βw and (βw + βxw)
were the log odds ratio of the effect modifier in untreated
and treated individuals, respectively. The parameter value
used to generate the random intercepts (σ 2

μ0 ) was given by
1 and the fixed interested β1 was given by log(1.3). The

parameter used to generate the random slopes (τ 2) was set
to 0.5, 1, or 1.5.
Using Eq. 10, we obtained pij. Participant level probabil-

ities of outcome were calculated as πij = epij
1−epij , then yij

was generated from a Bernoulli(πij) distribution.

Datasets
We contemplated two scenarios, including (i) no effect
modification and (ii) effect modification, by varying the
data generation parameters (βw,βxw).
Our rationale was to evaluate each measure of hetero-

geneity according to the following:

(i) Did the measures of heterogeneity increase with
increasing τ 2 in datasets that were generated such
that there was no effect modification?

(ii) Did the measures of heterogeneity decrease when
the effect modifier and an interaction term between
treatment and the effect modifier were included in
the model when effect modification was present?

Furthermore, we investigate whether the simulation-
based I2 satisfied the criteria proposed by Higgins et al.: (i)
monotonically increasing with increasing between-study
variance; (ii) not varied by changing scale; and (iii) not
affected by the number of studies [5].

IPD-MAwith no effect modification
To generate datasets with no effect modification, we set
βw and βxw to zero.

IDP-MAwith effect modification
We varied βw and βxw to generate datasets with weak or
strong effect modification, as presented in Table 1.

Data analysis
For each generated dataset, we considered both two-stage
and one-stage approaches to quantifying heterogeneity.

Two-stage approach
In this approach, each study is analyzed separately then
pooled together using methods described in “Between-
study variance (τ 2)” section [12].
In the first stage, we considered two logistic regression

models for each study in the dataset: (i) a crude model
(logit(pj) = β0 + β1xj) and (ii) an effect modification
model ( logit(pj) = β0+β1xj+β2wj+β3xjwj), where pj was
the true response probability for the positive result of the
jth individual in this study, β0 represented the intercept,
xj indicated the treatment status, and wj was the effect
modifier for the jth individual in this study.
When the IPD were generated without effect modifi-

cation, we fitted the crude model to estimate the pooled
treatment effect. When the IPD were generated with
effect modification, we considered a crude model and a
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model that included the effect modifier, the treatment,
and an interaction term between the effect modifier and
the treatment to estimate the pooled treatment effect.
In the first stage, we estimated the log odds ratio β̂1i (i =

1, ...,N) from each study. In the second stage, we pooled
these together via the DerSimonian and Laird method
and, estimated the between-study variance (τ̂ 2) and the
pooled treatment effect. We also applied the methods
described in “I2 statistic” and “R statistic” sections to
estimate the I2two−stage and R2

two−stage for quantifying the
heterogeneity in a two-stage IPD-MA.
One-stage approach
For each generated dataset, we fitted a logistic regression
with random intercept and slope for studies, estimated via
adaptive Gauss-Hermite quadrature. Similar to the two-
stage approach, we considered the following models: (i) a
crude model (logit(pij) = (β0 + μ0i) + (β1 + μ1i)xij) and
(ii) an effect modification model (logit(pij) = (β0 +μ0i)+
(β1 + μ1i)xij + β2wij + β3xijwij).
In all models, pij was the true response probability of

disease for the jth individual in the ith study, xij indicated
treatment status, and wij represented the effect modifier.
The random intercept and slope were μ0i,μ1i, such that:

[
μ0i
μ1i

]
∼ MVN

([
0
0

]
,
[

τ 20 ρτ0τ1
ρτ0τ1 τ 21

])
,

where τ̂1 was the estimated between-study variance of
the treatment effect. We estimated I2one−stage via the
simulation-based method, and R2

one−stage was computed
by the ratio of the estimated variance of β1 under a
random slopes model and a fixed slope model with ran-
dom intercepts, as described in the “I2 statistic” and
“R statistic” sections.

Metrics and performance
We collected I2, R2, and τ 2 as estimated from both two-
stage and one-stage approaches in each generated dataset

for all combinations of data generation parameters. We
estimated the median and interquartile range (IQR) from
1000 datasets. If the dataset was generated with effect
modification, then the median and IQR of the ratio of the
I2 as estimated from a crude model to that estimated from
a model that included the effect modifier and the inter-
action between the effect modifier and treatment status(

I2emod
I2crude

)
was collected. Similar measures were reported

for R2 and τ 2. We collected the ratios because we wanted
to investigate the differences in Î2, R̂2, and τ̂ 2 before and
after taking effect modification into account. All statistical
analysis were carried out in R, version 3.2.3 [23].

Results
With no effect modification
Figure 1 shows the estimated between-study variance τ̂ 2

from both the two-stage (dashed line) and the one-stage
(dotted line) approaches versus the true between-study
variance, τ 2 (solid line). As the true τ 2 increased, the esti-
mated τ̂ 2 from both approaches also increased. Compared
with the estimated τ̂ 2 from a two-stagemodel, the τ̂ 2 from
the one-stage model increased more rapidly. The two-
stagemodel always underestimated τ̂ 2. On the other hand,
the one-stage approach very slightly underestimated τ̂ 2

when the true τ 2 was small, and it overestimated τ̂ 2 when
the true τ 2 was larger than 1.3.
Figure 2 shows the conventional I2 from the two-

stage model (dashed line) and the simulation-based I2
from one-stage model (dotted line) versus the true
between-study variance τ 2. Both measures increased,
then leveled off as the true between-study variance
increased.
Table 2 presents the median value and IQR of the Î2

and R̂2 across 1000 datasets from the two-stage and one-
stagemodels for different combinations of data generation
parameter values. The median estimated I2 and R2 from

Fig. 1 True τ 2 versus estimated τ 2. The estimated between-study variances from a conventional two-stage model and a simulation-based
one-stage mode are compared with the true between-study variance
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Fig. 2 True τ 2 versus estimated I2. The estimated I2 from a conventional two-stage model and a simulation-based one-stage model are compared
with the true between-study variance. The dashed line and dotted line represented the estimated I2 from the two-stage and one-stage models
based on its median value across 1000 datasets

both the two-stage and one-stage model increased as
the true between-study variance increased. Î2two−stage and
Î2one−stage were very similar for N = 15 and N = 30.
However, the R2 statistic from both approaches slightly
increased as the number of studies increased. Varying the

Table 2 Median (IQR) of heterogeneity metrics for the treatment
effect when no effect modification was presenta

τ 2 Prevalence
(%)

Number
of studies

I2two−stage R2two−stage I2one−stage R2two−stage

0.5 30 15 0.10
(0.33)

1.22
(0.80)

0.58
(0.41)

1.75 (1.13)

1.0 30 15 0.44
(0.36)

2.30
(1.76)

0.83
(0.15)

3.29 (2.41)

1.5 30 15 0.58
(0.30)

3.22
(2.53)

0.89
(0.09)

5.84 (4.24)

0.5 70 15 0.01
(0.26)

1.00
(0.65)

0.52
(0.47)

1.76 (1.11)

1.0 70 15 0.39
(0.42)

2.12
(1.69)

0.80
(0.18)

3.33 (2.26)

1.5 70 15 0.55
(0.32)

3.07
(2.67)

0.87
(0.11)

5.66 (4.36)

0.5 30 30 0.12
(0.28)

1.29
(0.72)

0.60
(0.32)

1.79 (0.84)

1.0 30 30 0.47
(0.25)

2.44
(1.29)

0.84
(0.09)

3.49 (1.61)

1.5 30 30 0.62
(0.19)

3.54
(1.98)

0.90
(0.05)

6.32 (3.26)

0.5 70 30 0.06
(0.22)

1.14
(0.57)

0.56
(0.34)

1.81 (0.82)

1.0 70 30 0.42
(0.28)

2.30
(1.30)

0.82
(0.11)

3.52 (1.80)

1.5 70 30 0.59
(0.20)

3.37
(1.93)

0.88
(0.07)

6.36 (3.14)

aPlease note that I2 is presented here as a proportion varying from 0 to 1, rather
than as a percentage

prevalence from 30 to 70% did not affect the estimates of
I2 and R2 via two- and one-stage models.
Furthermore, τ̂ 2 from the two- and one-stage

approaches were similar for different prevalence and
number of studies (Additional file 1: Table S1).

With effect modification
Table 3 presents the median value and IQR of the ratio
of I2 and R2 from a model that ignored the effect mod-
ifier to one that included the effect modifier and an
interaction term between it and the treatment status
across 1000 datasets from the two-stage and one-stage
approaches with prevalence = 30%. Any measure of
heterogeneity should be sensitive to changes in hetero-
geneity. If we did not account for effect modification
when it existed, then heterogeneity might arise due to
this effect modification [24]. Hence, if the ratio esti-
mators reported in the Table 3 are less than 1, they
indicate good sensitivity of the measure to changing
heterogeneity.
When the strength of effect modification was weak, the

ratio estimators for I2two−stage were well below 1, while the
ratio estimators for I2one−stage were close to 1. When the
strength of effect modification was moderate or strong,
we found the ratio estimators for I2one−stage were below 1,
suggesting the estimated I2one−stage was sensitive to chang-
ing heterogeneity.When the prevalence increased from 30
to 70%, in the two-stage model, almost all values of the
ratio estimator for τ 2 were equal to 1 (Additional file 1:
Table S3), as were most values of the ratio estimator for
I2two−stage (Additional file 1: Table S2). The estimated R2

from the two-stage model had similar performance. Con-
versely, most of the ratio estimators for I2one−stage were less
than 1 when we fixed the prevalence to be 70% and varied
other parameter values. However, the convergence rate
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Table 3 Sensitivity of heterogeneity measures to accounting for
effect modification when prevalence of the outcome was 30%

Two-stage approach One-stage approach

τ 2 Number
of studies

Strength
of effect
modificationa

I2emod
I2crude

R2emod
R2crude

I2emod
I2crude

R2emod
R2crude

0.5 15 Weak 0.17
(1.00)

0.89
(0.38)

1.00
(0.41)

0.91
(0.25)

1.0 15 Weak 0.01
(0.57)

0.60
(0.34)

0.99
(0.07)

0.81
(0.25)

1.5 15 Weak 0.06
(0.59)

0.50
(0.30)

0.98
(0.05)

0.75
(0.18)

0.5 15 Moderate 0.02
(1.00)

0.86
(0.39)

0.56
(0.68)

0.86
(0.34)

1.0 15 Moderate 0.08
(0.87)

0.68
(0.46)

0.82
(0.28)

0.98
(0.40)

1.5 15 Moderate 0.34
(0.77)

0.65
(0.39)

0.82
(0.25)

1.06
(0.46)

0.5 15 Strong 0.01
(1.00)

0.82
(0.42)

0.11
(0.23)

0.90
(0.37)

1.0 15 Strong 0.32
(1.00)

0.81
(0.43)

0.20
(0.28)

1.07
(0.57)

1.5 15 Strong 0.42
(0.93)

0.75
(0.46)

0.22
(0.29)

1.31
(0.86)

0.5 30 Weak 0.01
(1.00)

0.78
(0.39)

1.00
(0.27)

0.88
(0.19)

1.0 30 Weak 0.01
(0.36)

0.53
(0.22)

1.00
(0.04)

0.78
(0.16)

1.5 30 Weak 0.16
(0.49)

0.47
(0.22)

0.98
(0.03)

0.74
(0.14)

0.5 30 Moderate 0.01
(1.00)

0.77
(0.40)

0.59
(0.46)

0.86
(0.29)

1.0 30 Moderate 0.01
(0.54)

0.65
(0.30)

0.82
(0.19)

0.99
(0.33)

1.5 30 Moderate 0.19
(0.61)

0.59
(0.30)

0.82
(0.17)

1.07
(0.31)

0.5 30 Strong 0.01
(1.00)

0.79
(0.37)

0.09
(0.15)

0.95
(0.37)

1.0 30 Strong 0.01
(0.68)

0.70
(0.34)

0.16
(0.17)

1.10
(0.46)

1.5 30 Strong 0.33
(0.73)

0.71
(0.33)

0.16
(0.17)

1.23
(0.69)

Median (IQR) was presented
We present the ratios of the measure estimated from a model that ignored the
effect modifier to one that included the effect modifier and an interaction term
between it and the treatment status
aEffect modification was classified as weak when βw = 1, βxw = 1, as moderate
when βw = 1, βxw = 3, and as strong when βw = 2, βxw = 5

for one-stage approach decreased as the strength of effect
modification became stronger (data not shown).
When the number of studies and prevalence were 30

and 30%, most of ratio estimators for I2two−stage were equal
to 0.01. This occurred because the estimated τ 2two−stage

from the effect modification model was close to zero
(Additional file 1: Table S3).
Furthermore, in Additional file 1: Table S3, the ratio esti-

mators for τ 2 in the two-stage model were all less than or
equal to 1. However, most of ratio estimators for τ 2 in the
one-stage model were larger than 1.

Discussion
IPD-MA are the gold standard of meta-analytic
approaches. While the primary objective of most
IPD-MA is to estimate pooled treatment effects, quan-
tifying inter-study heterogeneity of those effects is
also an important goal. Most statisticians agree that
a one-stage approach is the best and most flexible
approach to use when analyzing data from IPD-MA.
However, how best to quantify inter-study heterogene-
ity in that case is unclear [3, 5, 12], and most IPD-MA
of binary outcomes do not report any measure of
heterogeneity [6].
In this work, we considered using usual measures of

heterogeneity based on two-stage approaches, as well as
novel approaches based on a one-stage model. We evalu-
ated both two-stage and one-stage approaches via simula-
tion studies. In the two-stage approach, we used the usual
I2 and R2 statistics proposed by Higgins et al. to measure
heterogeneity [5]. In the one-stage approach, we adapted
a simulation-based ICC proposed by Goldstein et al. to
estimate the I2, as well as considering the R2 based on the
one-stage model.
Our results demonstrated that when there was no

effect modification, the estimated τ 2 from the two-stage
model was always underestimated. When using a one-
stage approach, the estimated τ 2 was underestimated
when the true τ 2 was small, but overestimated when the
true τ 2 was large. Correspondingly, we may assume that
the estimated I2 from the two-stage model was underes-
timated, whereas the simulation-based I2 in the one-stage
model was underestimated when inter-study heterogene-
ity was small and overestimated when it was large. Both
the two-stage I2 and one-stage I2 increased as the true τ 2

increased.
Including a variable and the interaction of that variable

and the treatment of interest when effect modification is
present should decrease the estimated between-study het-
erogeneity. In the presence of weak effect modification,
the estimated I2 from the two-stage model that accounted
for the effect modification was less than that from amodel
that did not. Nevertheless, the estimated I2 from the
one-stage approach that accounted for effect modification
quantified heterogeneity well when the strength of effect
modification was moderate or strong. The I2 from the
two-stage model was less sensitive to reflect the strength
of effect modification when the number of studies was
large and prevalence was low. Overall, this suggests that
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using the simulation-based I2 based on one-stage model
is preferable.
Differences between measures of heterogeneity in the

two-stage and one-stage approaches might be due to real
differences in the methods, or because slightly differ-
ent models were used. In the one-stage approach, we
only considered models that fit a random intercept and
slope, while the two-stage approaches fit just a random
slope. However, these are the approaches most commonly
used [6].

Strengths of the work
We have proposed a simulation-based I2 to use in one-
stage IPD-MA of binary outcomes. We have shown that
this I2 satisfies the conditions proposed by Higgins et
al., for any measures quantifying heterogeneity, i.e., (i)
the measurement function should monotonically increase
with increasing between-study variance τ 2 and (ii) not be
affected by the number of studies N [5]. Moreover, we
have shown that the simnulation-based I2 is sensitive to
changes in heterogeneity.
When the outcome is binary, the within-study vari-

ance varies across the studies as between-study variance
increases [7]. As a result, the assumption of equal esti-
mated sampling variances across all studies, as in Higgins
and Thompson’s paper [5], does not hold, and Higgins’s
I2 may be biased. For that reason, we would expect the
simulation-based I2 based on the one-stage approach to
have better performance than the conventional I2 based
on the two-stage approach.
Using a heterogeneity measure based on the one-

stage model is also advantageous, because the one-stage
approach allows investigation of patient- and study-level
covariates, and the treatment effect can be adjusted for
covariates at the participant- or study-level [18]. More-
over, the one-stage model allows MA of dose-response
curves (e.g., allowing non-linearity), improves power for
interactions [25, 26], and allows better control of effect
modification by patient- and study-level covariates than
the two-stage approach [3, 17, 27].
While we investigated its performance for binary out-

comes, using the ICC as an I2 for continuous outcomes in
the context of a mixed model would be possible, though
to our knowledge has not been used like this.

Limitations
There are several limitations in this work. We only con-
sidered the ICC estimator proposed by Goldstein to esti-
mate the I2 in one-stage IPD-MA of binary outcomes.
However, there are several other measures that have
been proposed as estimators of the ICC for binary data
[14, 21, 22]. Wu et al. discussed five different methods
to estimate the ICC with binary outcomes: an analysis of
variance (ANOVA) estimator, the Fleiss-Cuzick estimator,

the Pearson estimator, an estimator based on general-
ized estimating equations (GEE), and an estimator from
the random intercept logistic model [20]. These could be
adapted to estimate I2 in one-stage IPD-MA. On the other
hand, the measure we have proposed is easy to estimate.
Moreover, GLMMs estimated via adaptive quadrature

sometimes do not converge in the one-stage model [19].
Indeed, we observed a sometimes important rate of non-
convergence when the strength of effect modification was
strong and the prevalence was high. Other estimation
approaches such as penalized quasi-likelihood (PQL) or
Bayesianmultilevel models might be interesting to explore
[28, 29]. While convergence of PQL is more likely, esti-
mates can be biased with few subjects per cluster, low
event rates, or high inter-cluster variability [7, 29, 30].
For the two-stage approaches, we estimated τ 2 via the

method of moments estimator of DerSimonian and Laird,
despite more recent evidence suggesting that the Paule
and Mandel estimator is preferred [31].
Finally, we invsestigated a finite number of data gener-

ation parameters. In particular, we considered datasets of
15 or 30 studies, whereas it may have been interesting to
consider fewer (e.g., 5).

Conclusion
When a one-stage approach for IDP-MA of binary out-
comes is preferred, heterogeneity should be quantified via
the model estimated. In that case, we have proposed a
simulation-based I2 that performs as well or better than
the conventional I2 based on a two-stage approach. TheR2

based on the one-stage model also performed adequately
but is more difficult to interpret.

Additional file

Additional file 1: Table S1. The Median (IQR) of the estimated τ 2 when
no effect modification was present. Table S2. Sensitivity of heterogeneity
measures to accounting for effect modification when prevalence of the
outcome was 70%. Median (IQR) was presented. Table S3. Sensitivity of

heterogeneity measures

(
τ 2emod
τ 2crude

)
to accounting for effect modification.

Median (IQR) was presented. (PDF 145 kb)
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