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Abstract

Background: Metformin is one of the most commonly used drugs for type 2 diabetes mellitus (T2DM). Despite its
efficacy and safety, metformin is frequently associated with highly variable glycemic responses, which is hypothesized
to be the result of genetic variations in its transport by organic cation transporters (OCTs). This systematic review aims
to highlight and summarize the overall effects of OCT1 polymorphisms on therapeutic responses to metformin and to
evaluate their potential role in terms of interethnic differences with metformin responses.

Methods/design: We will systematically review observational studies reporting on the genetic association between
OCT1 polymorphisms and metformin responses in T2DM patients. A comprehensive search strategy formulated with
the help of a librarian will be used to search MEDLINE via PubMed, Embase, and CINAHL for relevant studies published
between January 1990 and July 2017. Two review authors will independently screen titles and abstracts in duplicate,
extract data, and assess the risk of bias with discrepancies resolved by discussion or arbitration of a third review author.
Mined data will be grouped according to OCT1 polymorphisms, and their effects on therapeutic responses to metformin
will be narratively synthesized. If sufficient numbers of homogeneous studies are scored, meta-analyses will be performed
to obtain pooled effect estimates. Funnel plots analysis and Egger’s test will be used to assess publication bias. This study
will be reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines.

Discussion: This review will summarize the genetic effects of OCT1 polymorphisms associated with variabilities in
glycemic responses to metformin. The findings of this study could help to develop genetic tests that could
predict a person’s response to metformin treatment and create personalized drugs with greater efficacy and safety.

Systematic review registration: Registration number: PROSPERO, CRD42017079978
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Background
Metformin is recommended by major clinical practice
guidelines as first-line oral anti-hyperglycemic drug for
use as monotherapy in individuals with newly diagnosed
T2DM [1]. It specifically decreases hepatic gluconeogene-
sis without enhancing insulin secretion, inducing weight
gain, or increasing the risk of hypoglycemia [2].
The precise molecular mechanisms underlying met-

formin’s action are not well understood. It was initially
suggested that one of the key actions of metformin is to
activate AMP-activated protein kinase (AMPK) through
a decrease in hepatic energetic status (increasing AMP:
ADP and/or ADP/ATP concentration ratios) or through
an upstream AMPK kinase (LKB1), leading to lowered
transcription of gluconeogenic genes [3]. However, recent
investigations in conditional AMPK knockout mice showed
that metformin inhibits hepatic gluconeogenesis in an
LKB1- and AMPK-independent manner via a decrease
in hepatic energetic status [4, 5]. This preferential action
of metformin in hepatocytes is due to the predominant
expression of organic cation transporter 1 (OCT1), the
main transporter responsible for hepatic uptake of
metformin [6, 7].
OCT1 belongs to the solute carriers (SLC) 22A super-

family of polyspecific membrane proteins that play a
central role in transportation of organic cations, anions,
and zwitterions thus playing a major role in the cellular
organic ions homeostasis [8, 9]. In human, OCT1 is
most strongly expressed in the liver, whereas in rodents,
OCT1 is also strongly expressed in the kidney and small
intestine. In human and rat liver, OCT1 is located to the
sinusoidal membrane of the hepatocytes [10]. The major
function of OCT1 most likely is mediating the uptake of
organic cations in hepatocytes as the initial step of biliary
secretion [11].
Despite its widespread use, there are considerable vari-

ations in response to metformin therapy ranging from
improvement in HbA1c levels (by up to 4%) to estimates
of ~ 35% failure to achieve the glycemic goal (HbA1c
level less than 7%) [12]. These variabilities in metformin
efficacy clearly suggest the implication of individual gen-
etic imprints [13]. Since genetic variations in some drug
transporters can dramatically alter the pharmacokinetics
and pharmacodynamics of many drugs, studies conducted
in different population groups have suggested that OCT1
genetic polymorphisms could affect metformin responses
[14, 15]. However, there is no consensus about its precise
effect; both positive and negative findings have been
reported [14, 16–19]. Consequently, there is need to
review the existing studies linking OCT1 variants and
metformin responses in order to (a) summarize the
overall effects of OCT1 polymorphisms on therapeutic
responses elicited by metformin intake and (b) to evalu-
ate the potential role of such polymorphisms in terms

of interethnic differences in response to metformin
therapy.

Previous literatures
Preliminary studies have reported the effects of OCT1
variants on metformin responses in T2DM individuals
[16, 20–24]. In a meta-analysis carried out by Dujic et al.
(2017), in order to clarify the significance of genetic varia-
tions of metformin transporter genes on glycemic response
to metformin, nine candidate variants in membrane trans-
porter genes (thereof 3 variants from OCT1) were analyzed
in 7968 individuals across the cohorts of the Metformin
Genetics consortium (MetGen). The authors show that the
candidate variants in membrane transporter genes showed
no significant effect on metformin response assessed as
HbA1c reduction in patients with T2DM [14].

Why we will conduct this systematic review?
The previous meta-analysis studied the effects of three
candidate OCT1 variants on glycemic response to metfor-
min in 7968 MetGen participants of European ancestry.

– Our study will not be restricted on pre-specified
OCT1 variants. We will analyze every OCT1 variant
identified that could be related to metformin response.
Of note, Seitz et al. performed a global scale population
analysis of OCT1 variants and identified 85 variants
in 52 worldwide population groups that included
sub-Saharan Africa, the Middle East and North
Africa, Central Asia, East Asia and Oceania, Europe,
and America [15].

– Our study will add studies that were not included in
the previous meta-analysis [17, 22–26].

– Genetic variation frequencies differ among different
ethnicities, which may be associated with variation
of susceptibility to adverse drug reactions among the
different populations [27]. In this study, we will also
compare the allele frequency distribution of OCT1
genetic variants among different ethnicities.

Objective
The objective of this systematic review is to highlight and
summarize the overall effects of OCT1 polymorphisms on
therapeutic responses to metformin and to evaluate their
potential roles in terms of interethnic differences with
metformin therapy.

Methods
This systematic review protocol is reported following the
Preferred Reporting Items for the Systematic Reviews
and Meta-analysis Protocols (PRISMA-P) 2015 Checklist
(Additional file 1) [28].
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Type of participants
Participants included in eligible studies must be diagnosed
with T2DM and treated with metformin monotherapy for
at least 3 months.
Most guidelines (American Diabetes Association,

European Association for the Study of Diabetes, American
Association of Clinical Endocrinologists) for the manage-
ment of T2DM recommend an initial approach consisting
of lifestyle changes and monotherapy, preferably with met-
formin. This recommendation is applicable if a patient is
diagnosed with an initial HbA1c less than 9% and no exist-
ing contraindications (eGFR < 30 ml/min/1.73 m2) [29].
Three-month period on metformin monotherapy is reason-
able to assess for glycemic improvement. Treatment modi-
fication is recommended when the HbA1c target (HbA1c
> 7%) is not achieved or maintained by metformin mono-
therapy at maximal tolerated dose over 3 to 6 months [2].

Type of exposure
We will include studies in which participants were geno-
typed to investigate genetic variants of OCT1.

Comparators
The comparators are the responders and non-responders
to metformin treatment. Response to metformin will be
graded based on HbA1c level. Non-responders will consti-
tute patients whose HbA1c levels declined by less than 1%
after 3 months of treatment. Responders will be cases
where HbA1c levels decreased by 1% or more after
3 months of treatment.

Outcomes
The primary outcome is the clinical effect of OCT1
polymorphisms on metformin response. Genetic polymor-
phisms of OCT1 will include single-nucleotide polymor-
phisms (SNPs), deletions, duplications, and copy-number
variants. Where possible, effect estimate will include odds
ratio and relative risk for the genetic variant effects in
responders compared to non-responders.
Secondary outcomes include effects of OCT1 polymor-

phisms on fasting plasma glucose (FPG) and postprandial
plasma glucose (PPG) after treatment with metformin
monotherapy. FPG and PPG will be compared between
responders and non-responders. The incidence of gastro-
intestinal side-effects will be also compared between
responders and non-responders where possible.

Eligibility criteria
Inclusion criteria

– Cross-sectional, case-control, and cohort studies
assessing the genetic effects of OCT1 variants on
metformin responses (HbA1c, fasting plasma glucose
levels, post-prandial glucose levels, and

gastrointestinal side effects including nausea, vomiting,
and diarrhea) in T2DM individuals, published between
January 1990 and July 2017 without any geographical
restriction

– Studies published in English or French
– Studies in which participants received metformin

monotherapy as initial anti-hyperglycemic therapy
for at least 3 months

Exclusion criteria
We will not consider:

– Letters, reviews, case reports, editorials, and
comments

– Studies conducted with normal or pre-diabetes
participants. Pre-diabetes is defined according to the
following criteria: impaired fasting blood glucose
(IFG) values between 100 and 125 mg/dL after at least
8 h of fasting, and/or glucose intolerance (ITG) when
glycaemia values are between 140 and 199 mg/dL 2 h
post oral administration of a 75 g glucose load
(OGTT), and/or if the values of glycosylated
hemoglobin (HbA1c) are between 5.7 and 6.4%

– Studies in which participants received only one dose
of metformin

– Studies in which participants also have other
conditions like chronic gastrointestinal diseases,
chronic liver disease, cholelithiasis, chronic
pancreatitis, inflammatory bowel disease,
gastroduodenal ulcer, chronic kidney disease, and
endocrine disorders

– Studies in which relevant data on metformin
responses is lacking or impossible to extract

Search strategy for identifying relevant studies
We will search the following electronic databases:
MEDLINE via PubMed, Embase, and CINAHL from
January 1990 to July 2017 without any geographical restric-
tions. The choice of 1990 as onset date was made on the
basis that OCT1 was cloned and functionally characterized
in the early–mid-1990s [30, 31]. The search strategy based
on the combination of relevant terms will be designed
by a librarian. The main search strategy conducted in
MEDLINE via PubMed is shown in Table 1. This search
strategy will be adapted for possible extension to other
databases and will be updated as we progress through
the review. We will also manually search reference lists
from relevant studies and contact experts in the field in
order to identify additional eligible studies.

Data collection and analysis
Selection of studies for inclusion in the review
Two review authors (EPMM and MGF) will independ-
ently identify articles and sequentially screen their titles
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and abstracts for eligibility. Thereafter, full texts of arti-
cles deemed potentially eligible will be retrieved. Further,
these review authors will independently assess eligibility
for inclusion in the review based on the inclusion and
exclusion criteria. Any disagreements between the two
review authors will be resolved by consensus and arbi-
tration of a third review author if necessary. A PRISMA
(Preferred Reporting Items for Systematic Review and
Meta-Analysis) flow diagram [32] will document the
process of literature selection and reasons for exclusion.

Data extraction and management
Two review authors (EPMM and MGF) will independently
extract data in accordance with the methods outlined in the
Cochrane Handbook for systematic reviews of interven-
tions. A data extraction form will be designed. Approxima-
tively 10% of the eligible studies will be randomly selected
and used as pilot in the data extraction sheet in order
to ensure its suitability.
Data will be collected on the first author name, year of

publication, geographical location (country where the
study was performed), study design, sample size, participant
characteristics (mean or median age, age range, proportion
of males), duration of treatment with metformin mono-
therapy, relevant OCT1 polymorphism, minor allelic
frequencies in each population with Hardy Weinberg
equilibrium if available, and primary outcome measure-
ments (measure of metformin response after treatment
with metformin). Gastrointestinal side effects, glycated
hemoglobin A1 (HbA1c) levels, fasting plasma glucose
(FPG), and post-prandial plasma glucose (PPG) concen-
trations after the treatment with metformin will be used
as indices for metformin responses. Any disagreements
between the two review authors will be resolved through
discussion and by consulting a third author if necessary.
Should any article be duplicated, we will contact the cor-
responding author and include the more relevant version.
For managing missing data, we will contact the corre-
sponding author of the respective studies in an attempt
to obtain the required details. If no correspondence is
received, the study will be included in the systematic
review and discussed in the narrative summary.

Data analysis including assessment of heterogeneity
Study characteristics and the effect estimates of OCT1
polymorphisms on metformin responses will be presented
in full, in tabular form. Since this effect varies from one
study to another, we will derive the pooled estimate of
each polymorphism investigated in multiple studies (≥ 2),
by using a random effect model.
Effects of potential confounding variables associated

with metformin responses including metformin dosing,
duration of treatment with metformin monotherapy,
lifestyle changes, and drugs interactions will be dealt by
using multivariable meta-regression analysis. All statis-
tical analyses will be carried out using Stata statistical
software version 14 (Stata Corporation, College Station,
Texas, USA).
Statistical heterogeneity among the included studies

will be assessed by the X2 test on Cochrane’s Q statistic.
A P value less than 0.1 will indicate significant heterogen-
eity. The I2 statistic test will be further used to quantify the
heterogeneity in the measure of association across studies.
Values of 25%, 50%, and 75% for I2 will represent, respect-
ively, low, medium, and high heterogeneity [33]. Where
substantial heterogeneity is detected, a subgroup analysis
will be performed to investigate the possible sources of
heterogeneity using the following grouping variables:
metformin dosing, sample size, lifestyle changes, practice
of physical activity, and genotyping methods. If included
studies differ significantly in design, sampling, and out-
come measures, a narrative synthesis of the findings
will be provided.

Subgroup analysis
We will conduct a subgroup analysis based on metformin
dosing, sample size, lifestyle changes, and the genotyping
method used to detect genetic variants. For the factor
metformin dosing, < 1.500 mg vs > 1.500 mg will be
compared. For the sample size, small vs large will be
compared. For lifestyle changes, be on diet (yes vs no)
and practice of physical activity (yes vs no) will be
compared. For the genotyping methods, used Taqman
vs others methods will be compared. Pooled odds ratios
(ORs) and 95% confidence intervals (CI) in each sub-
group will be calculated. The heterogeneity between
subgroups will be detected by using the X2 test on
Cochrane’s Q statistic.

Assessment of publication and reporting biases
We will assess publication bias by using standard
approaches including Funnel Plots and Egger tests if
enough eligible studies are available [34]. The reporting
quality of each study will be independently assessed by
two review authors (EPMM and MGF) using the STREGA
(Strengthening the Reporting of Genetic Association

Table 1 Search strategy in MEDLINE/PubMed

Search Search terms

#1 “type 2 diabetes” OR Diabetes (MeSH Terms)

#2 “genetic markers” OR “genetic polymorphism” OR “Single
nucleotide polymorphism” OR “Polymorphism” OR “variant”
OR “gene” OR “allele” OR Genetic (MeSH Terms)

#3 “Organic Cation Transporter 1” OR “OCT 1” OR solute carrier
family 22 organic cation transporter, member 1 (MeSH Terms)

#4 #1 AND #2 AND #3
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Studies) statement [35] which offers guidelines for
reporting of individual genetic association studies.

Assessment of methodological and evidence qualities
Studies deemed fit for inclusion in the systematic review
will be scored for methodological quality using the New-
castle-Ottawa assessment scale (NOS) [36]. Each domain
will be rated with “high,” “low,” or “unclear” with regard
to the risk of bias, with free text explanations.
We will also use the Grading of Recommendations

Assessment, Development, and Evaluation (GRADE)
methodology to assess the quality of evidence for each
outcome. Quality rating of overall evidence will be
downgraded according to five factors: risk of bias,
inconsistency, indirectness, imprecision, and publication
bias. In addition and where appropriate, the reasons to
upgrade the evidence quality will include a large magni-
tude of effects, a dose-response gradient, and plausible
residual confounding that would reduce a demonstrated
effect or suggest a spurious effect when results show no
effect. We will integrate downgrading and upgrading
factors to obtain an overall quality of evidence for each
outcome of interest. Overall quality of evidence will be then
ranked as high, moderate, low, or very low as specified by
the GRADE approach [37, 38].

Discussion
Type 2 diabetes a chronic degenerative metabolic disease
represents a major medical and public health problem.
After lifestyle changes failure, metformin is prescribed as
first-line treatment for T2DM. However, metformin is
not a panacea. Clinical practice indicates that there are
considerable inter-individual variations in metformin
response, with about 35% of patients failing to achieve
initial glycemic control on metformin monotherapy
[39, 40]. Several lines of evidence based on pharmacoge-
netic research have demonstrated that genetic variation is
one of the major factors affecting metformin responses
[41]. In addition, it is well known that genetic polymor-
phisms in gene encoding drug-metabolism enzymes and
drug transporters contribute to interindividual variabilities
in the pharmacokinetics/pharmacodynamics profiles of
clinical drugs [42]. The most studied transporter regarding
the impact of genetic variation on metformin action
has been OCT1. The gene encoding OCT1 is highly
polymorphic, with a number of coding missense single
nucleotide polymorphisms that affect its activity and
function [43]. This study will systematically review
worldwide reports that have investigated an association
between any OCT1 genetic polymorphism and therapeutic
response to metformin in T2DM patients. Understanding
the diversity of genetic markers associated with drug
response across different global populations is essential to
set ethnicity-specific reference for adverse drug reactions

and identify patient groups whose genetic characteristics
put them at special risk from either excessive or reduced
pharmacologic effects of metformin. In terms of limitations,
definitive conclusions may not be possible due to the
small sample size and heterogeneity of study design and
protocols.

Additional file

Additional file 1: PRISMA-P 2015 checklist. (DOC 82 kb)
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