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Abstract

Background: The large and growing number of published studies, and their increasing rate of publication, makes
the task of identifying relevant studies in an unbiased way for inclusion in systematic reviews both complex and
time consuming. Text mining has been offered as a potential solution: through automating some of the screening
process, reviewer time can be saved. The evidence base around the use of text mining for screening has not yet
been pulled together systematically; this systematic review fills that research gap. Focusing mainly on non-technical
issues, the review aims to increase awareness of the potential of these technologies and promote further collaborative
research between the computer science and systematic review communities.

Methods: Five research questions led our review: what is the state of the evidence base; how has workload reduction
been evaluated; what are the purposes of semi-automation and how effective are they; how have key contextual
problems of applying text mining to the systematic review field been addressed; and what challenges to
implementation have emerged?
We answered these questions using standard systematic review methods: systematic and exhaustive searching,
quality-assured data extraction and a narrative synthesis to synthesise findings.

Results: The evidence base is active and diverse; there is almost no replication between studies or collaboration
between research teams and, whilst it is difficult to establish any overall conclusions about best approaches, it is clear
that efficiencies and reductions in workload are potentially achievable.
On the whole, most suggested that a saving in workload of between 30% and 70% might be possible, though
sometimes the saving in workload is accompanied by the loss of 5% of relevant studies (i.e. a 95% recall).

Conclusions: Using text mining to prioritise the order in which items are screened should be considered safe and
ready for use in ‘live’ reviews. The use of text mining as a ‘second screener’ may also be used cautiously. The use of text
mining to eliminate studies automatically should be considered promising, but not yet fully proven. In highly technical/
clinical areas, it may be used with a high degree of confidence; but more developmental and evaluative work is
needed in other disciplines.
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Background
The problem: lack of precision in systematic searches
Systematic reviews are a widely used method to bring
together the findings from multiple studies in a reliable
way and are often used to inform policy and practice,
such as guideline development [1,2]. Whilst they are
often associated with medical research and randomised
controlled trials, they can be used to address any re-
search question using any relevant type of research [3].
A critical feature of a systematic review is the application
of scientific methods to uncover and minimise bias and
error in the selection and treatment of studies [4,5].
However, the large and growing number of published
studies, and their increasing rate of publication, makes
the task of identifying relevant studies in an unbiased
way both complex and time consuming [6].
In order to minimise the impact of publication bias

[7], reviewers make efforts to identify all relevant re-
search for inclusion in systematic reviews. This has al-
ways been a challenging and time-consuming aspect of
reviewing, but the challenge is growing due to the in-
crease in the number of databases to search and the
number of papers and journals being published; more-
over, as recent work has suggested that there is an in-
built North American bias in many major bibliographic
databases (e.g. PubMed), a wide range of smaller databases
needs to be searched in order to identify research for re-
views that aim to maximise external validity [8]. In prac-
tice, this means adopting a multi-layered approach to
searching which combines: extensive Boolean searches of
electronic bibliographic databases, specialised registers
and websites; with individual approaches to authors and
key informants; and the following of ‘citation trails’ (iden-
tifying which papers are cited by a relevant study and
which papers in turn cite the paper that it is reported in)
[9]. Of these three approaches, searching databases yields
around three quarters of the studies finally included [10].
Unfortunately, the specificity of sensitive electronic

searches of bibliographic databases is low (for definitions
of specificity, recall and other key metrics, see Table 1).
Reviewers often need to look manually through many
thousands of irrelevant titles and abstracts in order to
identify the much smaller number of relevant ones [7]; a
process known as screening. Reviews that address com-
plex health issues or that deal with a range of interven-
tions (e.g. a typical public health review might be
concerned with ‘interventions to promote physical ac-
tivity’) are often those that have the most challenging
numbers of items to screen. Given that an experienced
reviewer can take between 30 seconds and several mi-
nutes to evaluate a citation [11], the work involved in
screening 10,000 citations is considerable (and the
screening burden in some reviews is considerably higher
than this) (see also [12]).
Reviewers are thus faced with two competing demands.
Reviews that are to be used to inform policy and practice
often need to be completed to externally defined (often
short) timetables within limited budgets; but in order for a
review to be an accurate reflection of the state of know-
ledge in a given area, it needs to be comprehensive.
The need to complete reviews to tight timescales has

led (particularly in health technology assessments and
other rapid reviews) to the adoption of highly pragmatic
(and relatively specific) strategies to searching in order to
limit the number of studies to screen—even though rele-
vant research is probably missed because of this [16].
Limiting the recall of a search may undermine one of
the most important principles of a systematic review:
that its results are based on an unbiased set of studies.
The key problem—which this paper aims to begin to ad-
dress—is that there are currently no widely accepted al-
ternative ways of dealing with this issue. Reviews are at
risk of either limiting their searches to such a degree
that the validity of their findings is questionable or of in-
creasing the time and resources they require and thus
risk being unable to inform policy and practice.

Proposed ‘solution’: the (semi)-automation of screening
Broadly speaking, text mining is defined as the process
of discovering knowledge and structure from unstruc-
tured data (i.e., text) [17,18]. In the context of finding re-
search for inclusion in a review, we are interested in
automated techniques of discovering whether a given
study (described by a title and abstract) is relevant to
our review [19,20]. There are two ways of using text
mining that are particularly promising for assisting with
screening in systematic reviews: one aims to prioritise
the list of items for manual screening so that the studies
at the top of the list are those that are most likely to be
relevant; the second method uses the manually assigned
include/exclude categories of studies in order to ‘learn’ to
apply such categorisations automatically [19]; whilst the
technologies to perform each may be similar, we separate
them here as they are conceptually distinct. The prioritisa-
tion of relevant items may not appear to reduce workload
(if all citations are to be screened manually anyway), but
when there are large numbers of studies to screen manu-
ally, identifying most of the relevant ones quickly enables
some members of a reviewing team to begin the next
stages of the review, whilst the remainder of mostly irrele-
vant citations are screened by other team members. This
reduces the time from review commencement to comple-
tion, even if the total workload remains the same.
By reducing the burden of screening in reviews, new

methodologies using text mining may enable systematic
reviews to both: be completed more quickly (thus
meeting exacting policy and practice timescales and in-
creasing their cost efficiency); AND minimise the



Table 1 Definitions of performance measures reported in the studies

Measure # Definition Formula

Recall (sensitivity) 22 Proportion of correctly identified positives
amongst all real positives

TP
TPþFN

Precision 18 Proportion of correctly identified
positives amongst all positives.

TP
TPþFN

F measure 10 Combines precision and recall. Values of β < 1.0 indicate
precision is more important than recall, whilst values of
β > 1.0 indicate recall is more important than precision

Fβ;k ¼ β2þ1ð ÞTPk
β2þ1ð ÞTPkþFPkþβ2FNk

Where β is a

value that specifies the relative importance
of recall and precision.

ROC (AUC) 10 Area under the curve traced out by graphing the true
positive rate against the false positive rate. 1.0 is a
perfect score and 0.50 is equivalent to a random ordering

Accuracy 8 Proportion of agreements to total number of documents. TPþTN
TPþFPþFNþTN

Work saved over sampling 8 The percentage of papers that the reviewers do not
have to read because they have been screened
out by the classifier

WSS at 95% recall ¼ TNþFN
N−0:05

Time 7 Time taken to screen (usually in minutes)

Burden 4 The fraction of the total number of items
that a human must screen (active learning)

Burden ¼ tpTþtpTþtpTþtpUþtpU

N

Yield 3 The fraction of items that are identified by a
given screening approach (active learning)

Yield ¼ tpTþtpU

tpTþtpUþfnU

Utility 5 Relative measure of burden and yield that takes
into account reviewer preferences for weighting
these two concepts (active learning)

β⋅yieldþ 1 − burdenð Þ
βþ1 Where β is the user-defined weight

Baseline inclusion rate 2 The proportion of includes in a random sample
of items before prioritisation or classification
takes place. The number to be screened is
determined using a power calculation

ni
nt
Where ni = number of items included in

the random sample; nt = total number
of items in the random sample

Performance (efficiency)a 2 Number of relevant items selected divided by the
time spent screening, where relevant items were
those marked as included by two or more people

Selected; relevant items
Time

Specificity 2 The proportion of correctly identified negatives
(excludes) out of the total number of negatives

TN
TNþFP

True positives 2 The number of correctly identified positives (includes) TP

False negatives 1 The number of incorrectly identified negatives (excludes) FN

Coverage 1 The ratio of positives in the data pool that
are annotated during active learning

TPL

TPLþFNLþTPUþFNU Where L refers to labelled

items and U refers to unlabelled items
Unit cost 1 Expected time to label an item multiplied by

the unit cost of the labeler (salary per unit of time),
as calculated from their (known or estimated) salary

timeexpected × costunit

Classification error 1 Proportion of disagreements to total number of documents 100 % − accuracy %

Error 1 Total number of falsely classified items
divided by the total number of items

P
FPþFNð ÞP

TPþFPþFNþTNð Þ

Absolute screening reduction 1 Number of items excluded by the classifier
that do not need to be manually screened

TN + FN

Prioritised inclusion rate 1 The proportion of includes out of the total number
screened, after prioritisation or classification takes place

nip
ntp

Where nip = number of items included

in prioritised sample; ntp = total number

of items in the prioritised sample
TP = true positives, TN = true negatives, FP = false positives, FN = false negatives.
aPerformance is the term used by Felizardo [13], whilst efficiency was used by Malheiros [14].
[Not used in the included studies, though worthy of note is the ‘G-mean’. This is the geometric mean of sensitivity and specificity, and it is often used for a metric
alternative to F score in evaluating classification on imbalanced datasets. G-mean evaluates the classification performance for classification labels, whilst AUC evaluates
the classification performance for classification scores. Note that these metrics alone do not always reflect the goal in systematic reviews [15].
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impact of publication bias and reduce the chances that
relevant research will be missed (by enabling them to
increase the recall of their searches). In turn, by
facilitating more timely and reliable reviews, this meth-
odology has the potential to improve decision-making
across the health sector and beyond.
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The research problem
Whilst the logic behind applying text mining to the screen-
ing stage of systematic reviews has intuitive appeal, there are
obvious concerns that might be raised by the systematic re-
view community [21]. Firstly, there is not a lot of informa-
tion about text mining written for systematic review
audiences. The vast majority of papers on this topic are pro-
duced by computer scientists in journals and conference
proceedings in the field of medical informatics or artificial
intelligence. This means that they are not particularly ac-
cessible to systematic reviewers who need to make decisions
about their review processes, both in terms of the level of
technical detail presented in the reports and in the exposure
such papers would have in systematic review communities.
Secondly, for these technologies to achieve broad up-

take, they should be accessible to systematic reviewers
without the need for a computer scientist to write be-
spoke code or undertake custom processing of text for
individual reviews. Specialist advice may be required,
but it should be akin to the need for occasional special-
ist statistical advice, rather than being at the level of op-
erating the text mining tools. Any implementation
issues need to be identified and resolved before rolling
such technologies out to the intended users.
Thirdly, there are various ways in which workload

could be reduced through these technologies (reducing
number needed to screen; text mining as a second
screener; increasing the rate (speed) of screening and
improving workflow through screening prioritisation).
However, not all technologies allow all types of workload
reduction to be achieved. In order to make informed de-
cisions about using such technologies, systematic re-
viewers need to know which technologies can be used
for which workload reduction goal.
Fourthly, systematic reviews are a relatively new area in

which text mining technologies have been applied. Some of
the assumptions of text mining technologies in other appli-
cations do not hold when transferred to the review context.
For instance, systematic reviewers generally place strong em-
phasis on high recall—that is, a desire to identify all the rele-
vant includable studies—even if that means a vast number of
irrelevant studies need to be considered to find them. When
applied in other areas, precision (reducing the number of ir-
relevant items) and accuracy (correctly classifying items as
relevant or irrelevant) are typically more valued. To be ac-
ceptable to the systematic review community, new technolo-
gies must address the particular challenges and demands of
this context (We should also note at this point that we have
no guarantee of perfect recall even with current methods, as
search strategies are tailored to the resource available to
screen results, and humans are likely to make mistakes dur-
ing their manual sifting through records.).
Finally, the methods, their relative success and the

metrics used to evaluate them have not yet been pulled
together in a systematic way; this current study aims to
fill that research gap.

Aims and research questions of the review
The primary aim of this review is to gather and present
the available research evidence on existing methods for
text mining related to the title and abstract screening
stage in a systematic review, including the performance
metrics used to evaluate these technologiesa. The pur-
pose of this is to inform systematic reviewers of the
current state of text mining methods for use in reducing
workload at the screening stage, with a consideration of
the potential benefits and challenges when implement-
ing such technologies. Whilst we have explored the
more technical aspects of text mining technologies in
our data extraction, the intended audience of this paper
are users of the technologies rather than computer sci-
entists, and so technical issues are largely dealt with at a
conceptual level.
Following directly from the research problem as delin-

eated above, we looked to answer the following questions:

1. What is the state of the evidence base related to
automating (or semi-automating) the screening stage
(based on titles and abstracts) of a systematic
review? Specifically,

a. What methods are available; and
b. How has the field developed over time?
2. How has the workload reduction issue been evaluated?
Specifically,

a. What has been compared, using what research

study designs?
b. What metrics are available for evaluating the

performance of the approaches?

3. What are the stated purposes of (semi-)automating

the screening stage through text mining in terms of
workload reduction, what types of methods have
been used to address each purpose, and how
effective were they?

4. How, and with what effect, have key contextual
problems of applying text mining to systematic
review screening been addressed, specifically as
relates to the following challenges:

a. The importance of high recall for systematic

reviews?
b. The risk of hasty generalisation when training

from a certain pool of known includes and
excludes?

c. The problem of imbalanced datasets, in which
there are typically many more excludes than
includes?

d. Applying the technologies to review updates?

5. What challenges to implementation emerge from

reviewing the evidence base?
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Methods
We conducted a systematic review of research papers on
applications of text mining to assist in identifying rele-
vant studies for inclusion in a systematic review. The
protocol can be sent on request by the authors.

Information management
All records of research identified by searches were
uploaded to the specialist systematic review software,
EPPI-Reviewer 4, for duplicate stripping and screening
[22]. This software recorded the bibliographic details of
each study considered by the review, where studies were
found and how, reasons for their inclusion or exclusion,
descriptive and evaluative codes and text about each in-
cluded study, and the data used and produced during
synthesis.

Search methods
Database and website searches were conducted in
December 2013. Sources were searched from 2005 on-
wards. This date was chosen because, according to
Jonnalagadda and Petitti [23], the first proposed applica-
tion of text mining to screening in systematic reviews
was in 2005 (though this was not an evaluation of a
method and so was not included in our review).
Details of the electronic search strategy, including data-

bases searched and terms used, can be found in Additional
file 1: Appendix A; the PRISMA flow diagram can be
viewed in Additional file 2: Flow diagram.
We also included papers known to the team and as

recommended by colleagues. We checked the reference
lists of all included studies for additional relevant stud-
ies. We also followed forward citation recommendations
in Science Direct. A cut-off for identifying studies for in-
clusion in the review was set at 28 February 2014.
After all searches were completed, 1,253 records were

identified. These were screened for relevance to our re-
view using the inclusion criteria outlined below.

Inclusion criteria
Studies were screened in a two-stage screening process.
First, records were assessed against the following criteria
based on their titles and abstracts:

1. Must be published after 2004
2. Must be relevant to text mining
3. Must be relevant to the screening (document

selection) stage of a systematic review (or a review
of the evidence that follows systematic principles,
such as health technology assessment (HTA) or
guidelines development)

After an initial piloting of the first stage criteria to es-
tablish common understanding of the criteria, records
were screened once by two researchers (AOM and JT)
who are familiar with systematic reviewing and text min-
ing methods. Any records of doubtful relevance were
marked with a ‘query’ tag and discussed by the two re-
searchers until agreement was met (Agreement was al-
ways reached, and so recourse to a third reviewer was
not required.).
The full-text documents of records that met these cri-

teria (n = 69) were retrieved and proceeded to the sec-
ond stage of screening. The criteria for assessing the
full-text documents were:

1. Must be relevant to text mining methods or metrics
2. Must be relevant to the screening stage of a

systematic review (or similar evidence review)
3. Must not be a general discussion of the use of text

mining in systematic reviewing screening. That is,
the record must present a detailed method or
evaluation of a method.

The second stage of screening was conducted by one
researcher (AOM), with queried records checked by the
second researcher (JT) (reviewer agreement was 100% at
this stage). After full-text screening, a total of 44 records
were identified as relevant to the review questions.

Data extraction
Data extraction was conducted by one researcher
(AOM) and checked for accuracy and completeness by a
second researcher (JT) and discrepancies resolved by a
second check and/or discussion. We extracted and re-
corded information on the following broad issues (see
Additional file 1: Appendix B for the full data extraction
tool, Appendix C for the list of studies included in the
review and Appendix D for the characteristics of in-
cluded studies):

� Bibliographic details
� Evaluation context (details of review datasets tested)
� Evaluation of active learning (if applicable)

(see below for definition)
� Evaluation of classifier
� Evaluation of feature selection
� Implementation issues
� About the evaluation (the methodology and

metrics used)
� Study type descriptors
� Critical appraisal
� Comments and conclusions

Extraction consisted of two types of data: direct quota-
tions from the papers, which were gathered through
line-by-line coding of the papers; and categorical data,
which were gathered by noting the presence or absence
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of certain characteristics. These two types of data were
collected simultaneously. For example, a tick box was
checked if a study reported using a support vector ma-
chine (SVM) classifier, and line-by-line coding of text
that described the SVM was associated with that tick
box in the EPPI-Reviewer 4 software [22].

Synthesis methods
The reviewers discussed the key issues that needed to be
covered in the review, as well as themes that had
emerged through extracting data from the studies. On
that basis, an outline structure for the synthesis was de-
veloped. Under the outline subheadings, a narrative was
developed that drew on both the line-by-line coded text
and the categorical data. The categorical data allowed
for the generation of frequency tables and cross tabula-
tions that described the state of the evidence base; whilst
the coded text allowed for a richer interrogation of the
emerging themes.

Results
The results are presented in order of the research ques-
tions posed. Since some issues raised apply beyond the
systematic review context, which limited the range of
papers about text mining that we formally included, we
have inserted some commentary (entitled ‘further infor-
mation on this topic’) where information from other do-
mains may illuminate a specific issue.

Development of the evidence base
In this section, we address research question 1: What is
the state of the evidence base related to automating (or
semi-automating) the screening stage (based on titles
and abstracts) of a systematic review?

Chronological developments
Our 44 included studies fall within the 8 years between
January 2006 and January 2014—an average of 5.6 evalu-
ations a year. As can be seen in the timeline presented
in Figure 1, almost every year saw the evaluation of a
newly applied type of classifier or some new consider-
ation of the application of text mining to screening.
Indeed, most papers present a new ‘twist’ that distin-
guishes it from those before, with very few replications
or comparisons between papers. The developments
highlighted in the timeline are those which we had de-
fined a priori in our data extraction tool and therefore
also how the synthesis below is structured; they should
therefore be considered to be indicative of interesting
developments, rather than being a comprehensive list of
every innovation (For example, also worthy of note are
the decision trees by Frunza and colleagues in 2010 [24];
and dual supervision and elicited utility by Wallace et al.
(also in 2010 [25])).
This suggests a rapidly evolving evidence base (It also
has implications for the later parts of this synthesis, as it
is difficult to come to any overarching conclusions about
which approach works best.).

Workload reduction approaches
In this section, we address research question 2: What
are the stated purposes of (semi-)automating the screen-
ing stage through text mining in terms of workload re-
duction, and what types of methods have been used to
address each purpose?
It is evident from the literature that there are several

possible ways to reduce screening workload. The ap-
proaches that have received attention in terms of text
mining are: reducing the number of items that need to
be screened manually; reducing the number of people
needed to screen the items; increasing the rate (or
speed) of screening; and improving workflow. Table 2
shows the number of studies that implicitly or explicitly
addressed each of these approaches. Each of these will
be discussed in turn.

Reducing the number of items that need to be screened
In many reviews, the number of items to be screened is
very large. For example, 4 out of the 31 Cochrane Col-
laboration systematic reviews published in March 2014
had over 10,000 items to screen [26-29]. This can be a
particular problem for searches for certain types of study
designs, such as is the case with searches for non-
randomised controlled trials, for which database filters
are not available or consistently used [30]. Large num-
bers of items to screen is even more evident in non-
clinical disciplines, in which search strategies tend to be
broader in response to broader research questions, less
precise or consistent terminology and the lack of con-
trolled vocabularies; for example, EPPI-Centre reviews
on topics in public health, education and social care
regularly exceed 20,000 items to be screened. At its most
extreme, one review identified upward of 800,000 items
and another over 1 million items to be screened (see
[31] for a description of such ‘extreme reviewing’). Given
that an experienced reviewer can take between 30 sec-
onds and several minutes to evaluate a citation [11], the
work involved in screening even as ‘few’ as several thou-
sand citations is considerable.
An obvious solution to reducing workload is therefore

to reduce the number of items that need to be screened
manually. Historically, the volume of records returned
from a search was determined in part through the search
strategy: the number of records identified could be re-
duced either through searching fewer sources or through
carefully constructed database queries. The latter ap-
proach usually adopted an emphasis on the precision of
the search over its recall. However, some method



Figure 1 Brief timeline of developments in the use of text mining technologies for reducing screening burden in systematic reviews.
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guidelines specifically recommend favouring recall over
precision in order to avoid missing relevant studies (e.g.,
the Campbell Collaboration’s guide to information re-
trieval and the US Institute of Medicine of the National
Academies [32,33]).
Therefore, resource-efficient approaches that maximise

recall are needed, and a number of different models have
been identified here. The vast majority of studies in-
cluded in the review (n = 30) implicitly or explicitly
propose using text mining for the purpose of reducing
the number of studies that need to be screened manu-
ally. Within this set of studies, there are two main
Table 2 The number of studies implicitly or explicitly
addressing screening workload problems (n = 44)

Workload reduction approach Number of studies

Reducing number needed to screen 30

Text mining as a second screener 6

Increasing the rate (speed) of screening 7

Improving workflow through
screening prioritisation

12

Note. Some studies adopted more than one approach to workload reduction,
so column total is greater than 44 studies.
approaches to excluding items from a review. The first
approach is to use a classifier that makes explicit in/
out decisions; 23 studies evaluated this approach
[11,14,23,25,34-51]. The second approach is to use a
ranking or prioritisation system and then exclude items
that fall below some threshold or criterion, or that lie
within a ‘negative prediction zone’ [31,52-57]; seven
studies used this approach. Whilst many classifiers
employing the first approach inherently assign some
kind of score that indicates confidence in how likely an
item is to be an include or exclude (akin to the ranking
in the second approach), this is usually ‘hidden’ from
the reviewer such that the decisions are presented as
complete. In contrast, the second approach may re-
quire a reviewer to continue manual screening until
the (reviewer-specified) criterion is met.
It is important to note that the final approach, active

learning, can fit loosely into both of the abovementioned
camps. Active learning (evaluated in nine studies
[11,23,25,31,40,45,48,49,58]) is an iterative process whereby
the accuracy of the predictions made by the machine is im-
proved through interaction with reviewers. The re-
viewer—or review team—provides an initial sample of
include/exclude decisions that the machine ‘learns’
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from; the machine subsequently generates a ranked list
and requests the reviewer to provide decisions on items
high in the list that it will learn the most from. The ma-
chine adapts its decision rule including the information
from the additional items and generates a new list of
items for the reviewer to screen. This process continues,
with the number of reviewer decisions growing and a
greater number of relevant items found than would
otherwise be the case, until a given stopping criterion is
reached and the process ends. Although the final in-
clude/exclude decisions for any items not screened
manually come from the classifier, the human screener
still has some control over the training process and the
point at which manual screening ceases.
In all cases, authors reported that the systems tested led

to a reduction in workload; however, given the diversity of
approaches and the lack of overlap (replication) between
evaluations, it is impossible to conclude whether one ap-
proach is better than the other in terms of performance.
Typical performance reported a reduction in manual
screening workload from less than 10% (e.g. [41]) up to
more than 90% (e.g. [48]). Where expressed as a work-
load reduction, studies tended to report reductions of
between approximately 40% and 50% of work saved (e.g.
[25,40,41,55]). Studies differed from one another in
terms of the recall that they aimed for. Some expressed
results in terms of 95% recall (e.g. [23]), whereas others
expressed their results in terms of retrieving all relevant
studies (e.g. [48]). Razavi and colleagues took a critical
perspective with regard to manual decisions too, con-
cluding that ‘Since the machine learning prediction per-
formance is generally on the same level as the human
prediction performance, using the described system will
lead to significant workload reduction for the human
experts involved in the systematic review process’ [44].

Text mining as a second screener
Methods guidance for conducting systematic reviews
often suggests that more than one person should screen
all (or some proportion) of the records returned by the
searches (e.g., the Institute of Medicine (Washington,
DC) states in Standard 3.3.3. ‘Use two or more members
of the review team, working independently, to screen
and select studies’ [33]). The rationale behind this ap-
proach is that a single screener can inadvertently intro-
duce bias into the study selection process either because
of their interpretation of the inclusion criteria or through
their understanding of the content of titles and abstracts.
Moreover, given the volume of records to be reviewed, it
is conceivable that some relevant records might ‘slip
through the net’. It is believed that if there is consistency
in the inclusion decisions amongst two or more independ-
ent screeners, then the screening process is not likely to
be biased. This, however, becomes a very labour-intensive
process—particularly when the number of records to
screen is high. Although some guidance suggests that if
sufficient inter-reviewer reliability is achieved that it is ac-
ceptable to ‘double screen’ only a proportion of the re-
cords when there is a large number to screen, this still can
add a substantial amount of resource to an already time-
consuming procedure.
To combat this workload issue, six papers have advo-

cated the use of text mining as a second screener: re-
placing or supplementing the additional human reviewer
that would be required at this stage [24,30,59-62]. In this
model, one human reviewer screens all of the records
and the machine acts as the independent check (or pre-
sents a vastly reduced list of items to be screened to an
additional human reviewer). The evaluations of workload
reduction in this area have all been on a classifier model,
in which explicit in/out decisions are made by the ma-
chine. Results from the evaluations are positive—the clas-
sifiers had good agreement with the human reviewer/s.
Three of these papers were authored by Bekhuis and col-
leagues [30,59,60], who report that their approach could
reduce manual workload by between 88% and 98% [60].
Frunza and colleagues report two studies in this area
[24,61] and Garcia one study [62]. Like Bekhuis, they re-
port positive results from their evaluations, though they
present their findings in terms of high recall rather than
workload reduction, and so a direct comparison cannot
be made.

Increasing the rate of screening
An alternative approach to those above, which empha-
sises reducing the number of items that need to be
screened manually, is to aid researchers in coming to a
decision about each item more quickly; that is, to in-
crease the rate of screening. To achieve this, visual data
mining (VDM) approaches attempt to create a visual
representation of the connections between documents
(using term similarity and/or author connections) to as-
sist the screener in identifying studies easily that are
more likely to be similar to each other. Thus, once a
relevant document is identified, they can quickly scan
other documents that appear to be similar to the rele-
vant document (and similarly, identify documents that
are likely to be excluded quickly). The approach assumes
that humans can make a decision about a study’s rele-
vance faster using this additional visual information than
relying on the textual information in the titles and ab-
stracts alone [13].
Five evaluations of visual data mining were identified

[13,14,63-65], all in the field of software engineering.
The evaluations of visual data mining differ from evalua-
tions of other text mining approaches in that they em-
ploy a controlled trial evaluation design to compare the
speed and accuracy with which a human can screen
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items using VDM or without using VDM. The results sug-
gest that humans can screen faster with VDM aids than
without, although the accuracy of the human screeners
does not appear to change substantially [13,14,63-65].
A second approach to speeding up the rate of screen-

ing that is embedded within approaches to reducing the
number needed to screen is through efficient citation as-
signment. The only example that was identified of this
type was by Wallace and colleagues [49]. In that paper,
the authors emphasise that most review teams have a
combination of expert and novice screeners. Within the
context of an active learning approach, they developed an
algorithm that incorporates both information about the
relevance of each item and the expected time that it will
take to annotate that item; on that basis, the algorithm se-
lects citations specifically for expert and novice reviewers
to label. The authors reported that this approach enabled
more items to be screened in the same amount of time
compared with typical active learning approaches.

Improving workflow efficiency through screening
prioritisation
Screening prioritisation is ultimately a form of efficient cit-
ation assignment, in that it aims to present reviewers with
an ordered list of the items, with the items that are most
likely to be relevant to their review at the top of the list.
However, it differs from the model described by Wallace
et al. [49] in that it is not necessarily embedded within an
approach that is attempting to reduce the number needed
to screen and it does not differentially assign items to dif-
ferent types of reviewers (i.e., experts versus novices).
There are various proposed benefits of this approach

to workflow efficiency. One is that reviewers gain a bet-
ter understanding of the inclusion criteria earlier in the
process, as they encounter more examples of relevant
studies sooner than would otherwise be the case. It also
enables the retrieval of the full text of documents to
start sooner than can occur when citations are screened
essentially at random. This can be important, as obtain-
ing the full-text reports brings forward their full-text
screening, the checking of their bibliographies and, crit-
ically, enables contact to be made with study authors
much earlier in the review. It is also possible that this
will make the screening process faster, once the vast ma-
jority of relevant studies are identified, as the screeners
become more confident that items later in the list are
less likely to be relevant. This could also help with the
problem of over-inclusiveness that is often experienced
in reviews, in which reviewers tend to be cautious and
include many more items at this early stage than ultim-
ately make it into the review.
Cohen highlighted another potential benefit: ‘In reviews

with searches that result in a large number of citations to
be screened for retrieval, reviewing the documents in
order of their likely importance would be particularly use-
ful. The remainder of the citations could be screened over
the following months, perhaps by the members of the
team with less experience, whilst the work of reviewing
the includable studies is ongoing’ ([66] p. 692) (An on-
going project at the EPPI-Centre, which had a large vol-
ume of items to be screened (>38,000) but with a very
tight timeframe, has taken advantage of this benefit [67].).
There are also potential benefits for review updates.

Cohen stated that ‘by reviewing the most likely import-
ant documents before other documents, the human re-
viewers or curators are more likely to be able to “get up
to speed” on the current developments within a domain
more quickly’ ([68] p. 121). In quite a different applica-
tion of text mining to the screening process, Cohen later
explored the use of prioritisation for identifying when a
review update was required, which would involve send-
ing alerts to the review team when likely relevant new
studies are published [69].
In other words, this approach emphasises improving

workflow in a review and has proposed benefits for effi-
ciency beyond reducing workload in the title and abstract
screening phase. Four studies adopted a prioritisation ap-
proach to improve workflow [58,66,68,69]. All four evalua-
tions reported benefits of this approach.
Note that screening prioritisation can also be used to

reduce the number of items needed to be screened if a
screening cut-off criterion is established (see section on
this workload reduction approach, above). Seven studies
that have used screening prioritisation did so to reduce
the number needed to screen and reported benefits in
terms of the amount of work saved [31,52-57]. (Again,
the metrics and processes varied, so it is not possible to
estimate overall or mean statistics across these studies).

Specific issues relating to the use of text mining in
systematic reviews
In this section, we address research question 3: How
have key contextual problems of applying text mining to
systematic review screening been addressed? These reflect
the challenges that need to be addressed when applying
methods developed for other applications to the case of
systematic review screening.

The importance of high recall for systematic reviews
As mentioned in the ‘Background’ section, recall is often
prioritised over precision in systematic reviews. This is
because it is generally considered to be critical to re-
trieve all relevant items to avoid biasing the review find-
ings. The importance of high recall of relevant studies is
likely to be critical in the acceptability and uptake of text
mining techniques by the systematic review community.
Indeed, the authors of one paper reflected that ‘If those
who rely on systematic review to develop guidelines and
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policy demand 100% recall and informatics approaches
such as ours are not able to guarantee 100% recall, the
approaches may be doomed’ ([23] p. 15).
Many of the studies in this review explicitly refer to

the importance of high recall and the implications it
might have for text mining applications in this area
(studies which discuss the importance of high recall in-
clude [11,23,24,30,38,40,41,44,48,49,53,54,58,60,61,70]).
However, few of the studies directly built into the technol-
ogy an approach to maximising recall. Those that did dir-
ectly attempt to maximise recall are discussed below.
Voting or committee approaches for ensuring high recall
One approach to ensuring that studies are not missed is
to use a voting or committee approach. Essentially, mul-
tiple classifiers are run simultaneously, and then a ‘vote’
is taken on each item to determine whether it is likely to
be relevant or not. A conservative approach would be to
put forward for human screening any item that receives at
least one ‘include vote’ (e.g., Wallace et al. [11]); an ap-
proach that places additional emphasis on precision might
set a minimum number of agreeing votes (e.g., >50% of
the classifiers must agree that an item is an include [44]).
The appeal of such approaches is that the classification

decision is less susceptible to missing studies that do not
resemble the training set of includes, because each clas-
sifier can start with a different training set. Several stud-
ies have used this approach, with different numbers of
classifiers used in the committee. Razavi used a commit-
tee of five classifiers [44]; Wallace and Frunza used (up
to) eleven classifiers [11,24,61]; Ma used two classifiers
[40]. Only Frunza has considered whether the number
of votes makes a difference, as discussed below [24,61].
In Frunza (2010), if at least one decision for an ab-

stract was to include it in the systematic review, then
the final label was ‘Included’ [24]. They then tested
whether the number of votes (i.e., number of classifiers)
made a difference to recall and precision. They con-
cluded that the 2-vote technique is superior to the other
voting techniques (1-vote, 3-vote, 4-vote) in terms of the
F measure and work saved over sampling (WSS). The
highest level of recall was achieved through the 4-vote
technique. The success of combined human-machine
screening was similar in their later study [61], with the
conclusion that the 2-vote technique was the best per-
former. Importantly, Frunza noted that precision de-
creased slightly when the human decisions were added
to the machine decisions (i.e., the human incorrectly in-
cluded some items). This might be relevant to the obser-
vation that human screeners tend to be over-inclusive
(discussed in a later section).
(We will return to the issue of ‘voting’ approaches

below, in the section on ‘Hasty generalisation’).
Specialist algorithms
At least three types of classifiers have been modified to in-
clude a specialist algorithm that adjusts the learning rate
of the classifier to penalise false negatives. Cohen et al. ap-
plied a ‘false negative learning rate’ to their voting percep-
tron classifier expressing this as a ‘cost-proportionate
rejection sampling’ strategy [36]. Matwin et al. added a
heuristic weight factorization technique to their comple-
ment naïve Bayes (CNB) algorithm to maximise recall
when their original algorithm had unacceptably low recall
(<95%) [41]. Bekhuis also modified a complement naïve
Bayes classifier by optimising the decision parameters
using F3: a summary measure of performance that over-
weights recall relative to precision [60]. Wallace and col-
leagues modified their support vector machine approach
to penalise more severely for false negatives compared
with false positives [48].
All of these studies were retrospective evaluations in

which the performance of a classifier was compared
against completed include decisions and all reported
good results in terms of recall and workload reduction.
Future evaluations of this approach should consider
whether the amount and/or quality of the training data
make a difference to the ability of these modifications to
adequately penalise false negatives. The reason for this is
that, if used in a ‘live’ review, there might be only a small
number of human-labelled items in the training set to
be able to determine whether the classifier has incor-
rectly rejected a relevant study. If there are only a small
number of includable studies in the entire dataset, then
such penalties might not be implementable.

Human input
Ma proposed using active learning as a method for as-
suring high recall [40]. The logic behind this is that the
algorithm continues to ‘learn’ as more items are manu-
ally screened and so the decision rule is adaptable and
less reliant on the initial training set. However, Ma’s [40]
results suggest that recall actually declined when active
learning was added to a support vector machine or deci-
sion tree classifier and made no difference to the recall
of a naïve Bayes classifier. Further research on this is
needed to determine why this might be the case.

Hasty generalisation
The term ‘hasty generalisation’ refers to a bias which can
occur because the features in the training set are not
representative of the population; as opposed to other
forms of ‘biased training sets’ (e.g. where bias occurs
from non-randomised sampling). If the initial training
set of documents in a systematic review is not fully rep-
resentative of the range of documents which are of inter-
est, it is possible that these documents will be missing
from the set of studies identified as relevant through
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automation (see [25]). To exclude relevant studies due
to their use of different terminology from those that are
included would be to inject a systematic bias which
would be unacceptable in the vast majority of reviews.
Several methods for dealing with this have been evalu-

ated or discussed: drawing on reviewer domain know-
ledge, using patient active learning methods and
employing an ensemble of classifiers that vote on
whether an item should be included or not. These are
elaborated on in the following sections.

Reviewer domain knowledge
Some studies evaluated or discussed drawing on the
knowledge of the human reviewers to play a part in the
text mining process. This is particularly suited to active
learning approaches. Jonnalagadda and colleagues sug-
gested that, in active learning, ‘the dynamically changing
query set, which decides which document will be pre-
sented next, could be easily modified at any stage by re-
moving or adding terms to the query set. In this way,
the possibility of not finding documents that use differ-
ent words could be further minimised by allowing active
participation of the users in defining the terms in the
query set’ ([23] p. 15). They did not, however, test this
approach empirically.
In addition to other text mining methods, Shemilt

et al. employed an approach that used ‘reviewer terms’
(terms specified by the review team as being indicative
of an includable or excludable study) [31]. The text con-
tained in each title-abstract record that was yet to be
screened was analysed and the number of relevant and
irrelevant terms they contained was calculated. A simple
ratio of these values was then generated, and items were
ranked according to this ratio. The authors argue that
‘The purpose of this method is to act as a counterpoint
to the automated technologies; whereas in ATR [auto-
matic term recognition] and AC [automatic classifica-
tion], the results are heavily determined by those studies
already identified as being relevant; RT [reviewer terms]
offers another perspective on potential relevance, offer-
ing some protection against the problem of hasty
generalization’ ([31] p. 45). This might offer reassurance
to review teams that no relevant items are being errone-
ously discarded and is an easy approach to implement if
the reviewers are familiar with the key terminology.
A more holistic approach was evaluated by Wallace

et al. [25]. As in Shemilt et al. (above), reviewers pro-
vided terms that were indicative of includes and excludes
(although the terms were ranked in order of ‘indicative-
ness’ in the Wallace paper). Wallace et al. suggested that
combining prior reviewer knowledge with the machine
model could be more effective at avoiding hasty general-
isation and tested a variety of combinations in terms of
the timing at which the reviewer knowledge rankings
were emphasised relative to the machine labelling. They
concluded that beginning with a bias towards the reviewer
rankings and subsequently decreasing its importance as la-
belling proceeds would be the most effective way of com-
bining reviewer domain knowledge in the process; however,
they also noted ‘How this should be done precisely remains
a problem for future work’ ([25] p. 8).
In addition, in a study which came to light after our

formal searches were complete, Small et al. utilised re-
viewer ‘labelled features’ within what they called a ‘con-
strained weight space SVM’ [71]. They found that, by
allowing reviewers to influence the decisions made by
the classifier, it is possible to obtain better results with
smaller samples of training records.

Patient active learning
‘Patient active learning’ was first proposed by Wallace
et al. as a means of overcoming hasty generalisation using
an active learning approach [11]. The distinguishing fea-
ture of ‘patient’ active learning is that training is based on
different ‘views’ of the records (e.g. classifiers based on ti-
tles or abstract or MeSH terms) which are selected at ran-
dom at each iteration of the active learning process. The
additional variability that this approach injects into the
process above the use of a single ‘view’ aims to ensure that
the system as a whole is exposed to as wide a variety of
relevant studies as possible and thus does not overly nar-
row the range of items it considers to be relevant.
Wallace and colleagues evaluated four different active

learning strategies and found that patient active learning
outperformed the others [11]. In a study which repli-
cated some of Wallace’s work on the same data, Miwa
and colleagues evaluated a range of active learning en-
hancements and found that patient active learning is cer-
tainly better than some strategies, though not as good as
others [45].

Voting or committee approaches for dealing with hasty
generalisation
The concept of a committee of classifiers was earlier in-
troduced for helping to ensure high recall. Given that
hasty generalisation would logically lead to lower recall,
it is unsurprising that this approach has also been sug-
gested as a solution to hasty generalisation.
Two studies explicitly refer to this approach. Miwa

et al. reported that voting showed some improvement
over non-voting approaches, especially for one particu-
larly ‘messy’ dataset with respect to the terminology used
in that review topic [45]. Shemilt et al. did not compare
voting with non-voting approaches but ran the classifier
multiple times and then manually screened only those
items that were consistently classified as being relevant
[31]. This approach seems likely to have increased preci-
sion at the expense of sensitivity.
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Dealing with imbalanced datasets
At the title and abstract screening stage of a typical sys-
tematic review, the dataset is imbalanced in that there are
usually far more excluded studies than included studies.
One paper reported a median search precision (number of
included studies divided by total number of items located
through searching) of 2.9% across 94 health-related sys-
tematic reviews [72]. This translates to an imbalance in
which there are approximately 33.5 times as many ex-
cludes as includes. Search precision can be much less than
this, resulting in even greater imbalances.
In text mining evaluations, this is referred to as the

‘class imbalance’ problem (where ‘class’ refers to the des-
ignation as an include or an exclude). It is a problem for
text mining as there are far fewer relevant items com-
pared to non-relevant items on which to train the classi-
fier or text mining technology. Also, Wallace et al. state
that ‘class imbalance presents a problem for classifica-
tion algorithms, because they have typically been opti-
mised for accuracy, rather than the recall of a particular
class’ ([11] p. 5). Since it is possible to have high accur-
acy even if a system produces many false negatives [73],
this could be a problem for systematic reviews where
missing relevant studies is highly undesirable.
To counter the class imbalance, various methods have

been proposed. They generally rely on up-weighting the
number of includes or down-weighting the number of
excludes; or undersampling the number of excludes used
in the training set. The various approaches are described
in the following sections.
Weighting
Weighting approaches assign greater weights to positive
instances (includes) than to negative instances (ex-
cludes). Generally, the weight is set to the ratio of the
number of positive instances to the number of negative
instances.
Compared to an un-weighted method or an aggressive

undersampling method (described below), Miwa et al.
reported better performance of active learning models
on a variety of imbalanced datasets [45]. This was par-
ticularly the case when weighting was used in conjunc-
tion with a ‘certainty’ approach, in which the next items
to be annotated in the active learning process were se-
lected because they had the highest probability of being
relevant to the review, based on the output of classifiers
trained on previously annotated items.
Cohen et al. also reported good results for a weighted

model, in which they modified their voting perceptron
classifier to incorporate a false negative learning rate
(FNLR) [36]. Across 15 reviews, they found that the FNLR
should be proportional to the ratio of negative to positive
samples in the dataset in order to maximise performance.
Undersampling
Undersampling involves using fewer non-relevant stud-
ies in the training set than might be expected given their
prevalence in the entire dataset. Two different types of
undersampling have been tested in this context: random
and aggressive.
Random undersampling involves randomly selecting a

training set with the same number of relevant and non-
relevant studies. This approach was adopted in four stud-
ies that did not compare random undersampling to other
methods for dealing with class imbalance [11,31,39,48].
Ma compared five undersampling methods with their ac-

tive learning naïve Bayes classifier—one of which was ran-
dom undersampling [40]. Method 1 involved selecting the
negative examples whose average distances (a measure of
similarity/dissimilarity) to the three farthest positive exam-
ples are the smallest; Method 2 involved selecting the
negative examples whose average distances to the three
closest positive examples are the smallest; Method 3 in-
volved selecting the negative examples whose average dis-
tances to the three closest positive examples are the
largest; Method 4 involved removing those examples that
participated in Tomek links (see [74] for a definition);
Method 5 involved selecting negative examples randomly.
Ma concluded that random undersampling did not per-
form the best. ‘In general, the first and third undersampling
methods work well with all feature selection methods. We
have a very high recall after performing undersampling
techniques. However, we have a big trade-off in precision’
([40] p. 75).
Aggressive undersampling as defined by Wallace (in

the context of active learning) involves discarding the
majority examples (i.e., excludes) nearest the current
separating hyperplane [11]. The separating hyperplane
represents the border between the two classes: includes
and excludes. Therefore, by throwing away those nearest
to the hyperplane, we are discarding those that are the
most ambiguous as to whether they should be in the in-
clude or exclude class. As such, the items that are more
likely to be excludes are sent to the human reviewer for
manual screening, which are then used to retrain the clas-
sifier. The logic behind this approach is to ‘explicitly push
the decision boundary away from the minority class [in-
cludes], as it has been observed that when there is class
imbalance, SVMs are prone to discovering hyperplanes
that are closer to the minority class than the ideal separat-
ing boundary, resulting in false negatives’ ([11] p. 5).
Wallace (2010a) [11] compared naive random sam-

pling and aggressive undersampling in their evaluation
of active learning with an SVM classifier. They con-
cluded that aggressive undersampling performed better
[11]. Miwa et al. compared aggressive undersampling
with a range of other options and found that whilst it
outperformed the other strategies at the beginning of
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the active learning sequence, other methods overtook it
as screening progressed [45].
It is difficult to draw conclusions across the papers, as

the two that conducted a comparison differed in many
other dimensions (classifier, reviews tested, etc.). This re-
quires further exploration.
Cohen and colleagues observed that any kind of sam-

pling strategy can result in the exclusion of a large propor-
tion of the possible sample available from which the
classifier can ‘learn’ [66]. ‘To address this, we sample the
nontopic data, creating several different priming SVM
models, and extract the support vectors from each of these
models to use as priming vectors. The nontopic data are
rejection sampled, that is, sampled without replacement.
The probabilities of inclusion for each sample within a
given nontopic are adjusted so that approximately the
same number of samples from each nontopic is included.’
In their experiments they used 20 resamples.

Other methods for dealing with class imbalance
Some authors claimed that certain classifiers are particu-
larly well suited to imbalanced datasets. Bekhuis Frunza,
Kouznetsov and Matwin claimed that complement naïve
Bayes (CNB) is suitable for imbalanced data, particularly
when implemented in Weka [24,30,41,54,60,61]. Frunza
and colleagues compared CNB with other classifiers (de-
cision trees, support vector machine, instance-based
learning and boosting) but concluded that CNB always
performed better; it is not clear, however, whether this is
because of the class imbalance problem or other differ-
ences between the approaches [24,61].
Some authors have suggested that the selection of fea-

tures for text mining might be important in addressing
class imbalances. Although they did not test it in their
paper, Bekhuis et al. suggested that selecting features
within the positive (include) and negative (exclude) classes
before grid optimization, rather than across all items,
would be appropriate for dealing with class imbalance [30].
Frunza explicitly compared classifiers that had been
‘boosted’ in terms of having more representative features
for the included class (a balanced dataset) with typical fea-
ture selection technique (imbalanced dataset) but found no
significant difference between these two approaches [24].

Updates versus ‘new’ reviews
Out of the 44 studies, the context of 36 was a new re-
view, eight a review update, and for two studies the re-
view context was not the primary area of investigation
(the issue was the performance of classifiers). The con-
text of new reviews is challenging, because there is so lit-
tle training material available at the start of screening on
which to conduct any machine learning. Whilst the con-
cept of obtaining an unbiased set of training material
using a random sample is widely employed, Wallace and
colleagues have outlined an explicit iterative method to
determine whether the variation in likely ‘includes’ has
been explored adequately enough for active learning to
begin [11]. They do this drawing on the work of Brinker
who has developed methods for incorporating diversity
in active learning by evaluating the stability of a measure
of similarity between ‘included’ citations between itera-
tions [75]. Once the measure of similarity ceases to
change between iterations, the sample can be considered
ready to perform active learning.
In contrast, whilst the review update might appear to

be the more straightforward situation, since there are
preexisting citation decisions on which to ‘learn’, some
of the earliest work included in our review—by Cohen—
shows that review updates face many challenges of their
own [35,66,68,69]. In particular, the issue of ‘concept
drift’ looms large over the review update. As Bekhuis
points out, there are many changing variables in a re-
view update—the team, the searches and even aspects of
the question may all change—and the data from the ori-
ginal review may cease to be a reliable indicator of what
should be included in the new one [60]. Dalal and col-
leagues attempted to mitigate the effects of concept drift
but were not entirely successful [70].

Additional information on this topic
Online learning methods which treat datasets as a
stream, updating their model for each instance and dis-
carding it after updates, can be used for new reviews.
Some online learning algorithms adapt their models
quickly to new coming data and can be adapted to deal
with slight concept drift [76]. Domain adaptation, multi-
task learning and transfer learning can improve models
for a specific review by using related information from
other reviews and problems. Such learning methods sup-
port the learning of multiple, related review targets [77].
How has the workload reduction issue been evaluated?
The following section addresses research question 4: How

has the workload reduction issue been evaluated? There are
three aspects that we explore: what has been compared and
through what research design; and what metrics were used
to evaluate the performance of the technologies?
What has been compared, using what research design?
The vast majority of evaluations used a retrospective de-

sign; that is, they assessed performance against the ‘gold
standard’ judgements made in a completed systematic re-
view [11,25,30,34,36-45,47,48,51,52,55,56,59-62,66,68,70]
(n = 27). In contrast, prospective designs are those in
which the technology was assessed in a ‘live’ context; that
is, as the review was being conducted. Seventeen studies
employed a prospective design, of which five were self-
described as ‘case studies’ [31,46,50,57,63], four were
controlled trials [13,14,64,65], and eight were other pro-
spective designs [23,24,35,49,53,54,58,69].
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The type of design is important, as prospective designs
have the potential to tell us more about how the text
mining technologies might work when implemented in
‘real life’. Whilst retrospective simulations are essential in
determining the relative performance of different classi-
fiers or establishing the optimal parameters of a classifier,
some of the difficulties of implementing such technologies
in a live review cannot be taken into account adequately
(e.g., reviewer over-inclusiveness at different stages of the
process, which might ‘mislead’ the classifier about what an
include ‘looks like’). Moreover, many of the evaluations
are of relatively ‘neat’ datasets, in that they have a suffi-
cient number of includes on which to train (even if they
are the minority class). How does text mining cope when
there is a tiny number of includes, or in a so-called ‘empty’
review, in which there are no included studies?b

Related to the issue of how the technologies were eval-
uated is the question of what was evaluated. Most of the
evaluations conducted to date (n = 29) make some form of
comparison between different algorithms or methods
for text mining [11,23-25,30,34,36,37,39-43,45,49,51-55,58,
60-62,66,68-70]. The main issues evaluated are: the rela-
tive effectiveness of different methods for classifying stud-
ies (i.e. ‘classifiers’ and different options for using them
(‘kernels’)); how different approaches to ‘feature selection’
(the way that aspects of studies—e.g. their titles, abstracts
and MeSH headings are encoded for machine learning)
impact on performance; how effective different ap-
proaches to separating different pieces of ‘intelligence’
about the study are (e.g. separating titles from ab-
stracts); and whether performance differs depending on
how many studies are used for the initial training. The
remaining 16 evaluations do not compare aspects of the
methodology; rather, they report on the effectiveness of
one chosen method for implementing text mining
[13,14,31,35,38,44,46-48,50,56,57,63-65].
Unsurprisingly, study design is associated with certain

types of comparisons (see Table 3). The four controlled
trials all compared human performance with machine
performance but did not compare different aspects of
text mining technologies. None of the five case studies
compared text mining features either, with an emphasis
instead on how workload could be reduced in an ongoing
review. The retrospective simulation studies tended to
compare more features of text mining than other pro-
spective studies, perhaps because of the comparative ease
with which adaptations to the text mining approach can
be made in a retrospective evaluation.

Metrics for assessing classifier performance
In this section, we address research question 3: What
metrics are available for evaluating the performance of the
approaches, in terms of both effectiveness and efficiency?
The metrics are presented in order from the most popular
to the least in Table 1. Most studies reported more than
one performance metric and generally considered the
importance of both identifying relevant studies and re-
ducing workload for the reviewers. The metrics are de-
fined in Table 1.
There are various arguments used throughout the litera-

ture as to which metric is the most appropriate. It should
be noted that not all metrics are suitable for all evaluation
designs or text mining technology types. For instance,
coverage is only suitable for active learning approaches,
whilst Cohen noted that ‘If the task is not to separate doc-
uments into positive and negative groups, but instead to
prioritise which documents should be reviewed first and
which later, then precision, recall and F measure do not
provide sufficient information’ (p. 121) [68].
Measures that allow the trade-off between recall and

precision to be taken into account on a review-by-
review basis seem particularly useful, as they allow re-
viewers to change the relative importance of these two
metrics depending on priorities in a given review. These
metrics include notably the F measure, work saved over
sampling and utility, which are summarised below.
F measure is a weighted harmonic mean of precision

and recall. The weighting can be determined on a review-
by-review basis, allowing reviewers to assess the relative
importance of recall and precision in their context.
Work saved over sampling (WSS) indicates how much

work (in terms of number of items needed to screen) is
saved over and above the work saved by simple sampling
for a given level of recall. It is typical to use a recall level
of 0.95. See Cohen et al. [36].
Utility is relevant for active learning approaches and is

calculated based on yield and burden. Yield represents the
fraction of includes in the data pool that are identified by
a given method, and burden represents the fraction of in-
cludes in the data pool that have to be annotated/reviewed
by reviewers. The formula to calculate utility includes a
weighting factor so that the reviews can specify the relative
importance of yield and burden. This weighting factor has
been established for some contexts but might need to be
re-established for application in other settings [25].
It is clear from the three metrics above that there is a

subjective element to the performance metrics, as it is
up to the evaluators to determine thresholds and weight-
ing values. Whilst this has the advantage of making the
metrics tailored to the review and evaluation context, it
(a) makes it difficult to compare across studies that use
different thresholds/weights in their calculations, and
(b) it is not always transparent or justified as to how the
thresholds/weights were selected.

Evaluation metrics that emphasise high recall
As mentioned above, many studies discussed the import-
ance of high recall without necessarily making explicit



Table 3 Cross tabulation showing the number of studies employing certain research designs by the aspects of text
mining that were compared (n = 44)

What aspect of text mining
was compared

Retrospective
simulation

Prospective—
case study

Prospective—
controlled trial

Prospective—other Total—what
was compared

Classifiers/ algorithms 13 0 0 3 16

Number of features 2 0 0 0 2

Feature extraction/sets (e.g., BoW) 8 0 0 2 10

Views (e.g., T&A, MeSH) 5 0 0 1 6

Training set size 2 0 0 0 2

Kernels 2 0 0 0 2

Topic specific versus
general training data

3 0 0 1 4

Other optimisations 9 0 0 4 13

No comparison 5 5 4 1

Total—study design
(duplicates removed)

(27) (5) (4) (8)

Note. Many studies compared more than one aspect of text mining, therefore column total for ‘Total—what was compared’ sums to greater than 44. The row for
‘Total—study design (duplicates removed)’ shows the number of studies of each design type rather than the column totals, as the column totals would include
duplications of the same studies that compared multiple aspects of text mining technologies.
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adaptations to their text mining approach. They do,
however, consider the importance of high recall in their
choice of metric when evaluating the performance of the
text mining technology. Examples included:

� Bekhuis (2012) used F3—a summary measure that
overweights recall relative to precision—because
they felt this was more in keeping with reviewer
behaviour (than a metric which weights them
equally) [59]

� Kouznetsov (2010) used false negatives (relevant
articles mistakenly ranked at the bottom of a ranked
list) as their primary performance measure [54]

� Wallace (2011) [58] used U19—a weighted metric in
which recall is 19 times as important as cost. The
value of 19 was determined through an expert
consultation process [25] (see Wallace [11])

� Dalal (2013) evaluated performance using a range of
probability thresholds to better consider the impact
on observed performance of using different recall
and precision trade-offs: one metric was based on
‘sensitivity-maximising thresholds’ whilst another
‘preserved good sensitivity whilst substantially
reducing the error rate [false positives]’ (p. 348) [70]

In contrast to most of the studies in this review, Dalal
(2013) argued that ‘neither error minimization nor sensi-
tivity maximisation are absolute goals’ (p. 348) [70]. In
fact, Fiszman and colleagues (2008, 2010) used the F0.5
measure, which weights precision more highly than re-
call [38,53]. They argue that clinical practice guideline
developers value precision more than recall and there-
fore performance should be evaluated on this basis. This
suggests that the relative importance of recall and preci-
sion might vary from context-to-context, and a high re-
call should not be assumed to be more important than
high precision (though in most systematic review guid-
ance—and practice—maximising recall is prioritised).

Evaluation metrics that account for class imbalance
As with the issue of the importance of high recall in sys-
tematic reviews, some authors have reflected the class
imbalance problem in their choice of evaluation meas-
ure. Cohen (2010) argued that the AUC is independent
of class prevalence [24,35], whilst Frunza [24] reported
the F measure for the same reason. The choice of evalu-
ation metric should consider whether class imbalance is
likely to bias the results.

Further information on this topic
We should note that other evaluation metrics can also
account for class imbalance. For example, if you care
about both the TPs and the TNs, you’d use ROC-AUC,
but if you only care about the TPs, you might prefer
PR_AUC [78]. See also [79].

Implementation challenges
The following section attempts to answer research ques-
tion 5: What challenges to implementation emerge from
reviewing the evidence base? Whilst almost all of the pa-
pers concluded that text mining was a ‘promising’ ap-
proach to reduce workload in the screening stage of a
systematic review, it was not always clear how these
technologies would be rolled out for use in ‘live’ reviews.
A few issues became clear that need to be considered for
the knowledge gained in these studies to have practical
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application (all of which apply to other uses of automa-
tion and semi-automation in systematic reviews [80]).

Deployed systems
Only six different systems (reported in 12 papers) are
currently ‘deployed’—that is, are in a packaged system
that a reviewer could use without having to do any com-
puter programming. Some are bespoke systematic review
systems, whereas others are more generic software for
predictive analytics which can be used in a systematic
review. The bespoke systems for systematic reviews
which were used in evaluations in this review are:
Abstrackr [49,50], EPPI-Reviewer [31,57], GAPScreener
[51] and Revis [64]. Many generic software applications
support the kinds of machine learning evaluated in this re-
view; the two that were used in our included papers were
Pimiento [62] and RapidMiner [59,60]. However, even
though no programming may be required to use these
tools, reviewers using the systems are likely to require
some training to be able to use them. Given concerns
about the need for high recall, imbalanced datasets, etc.,
these are not packages that can be used without under-
standing some of the behind-the-scenes decisions that are
made with respect to handling the data.

Replication of evaluations
Only one study in the evidence base represents a true
replication of another study (Felizardo [65]). There are
some partial replications that used the same dataset; not-
ably, Cohen and colleagues and Matwin and colleagues
had an ongoing correspondence in the Journal of the
American Medical Informatics Association in which they
presented results across the same review datasets using
different classifiers and parameters. Most studies differ
in many ways: datasets used, classifiers tested, feature se-
lection processes applied, citation portions viewed, com-
parisons made, study designs employed, metrics used for
evaluation, etc. This makes it impossible to compare re-
sults across studies directly. It also makes it difficult to
conclude whether any particular aspect of the above-
mentioned differences is particularly important to adopt
or fruitful to explore in future research.
It is hoped that future evaluations will attempt more

replications of the same methodological applications but
on different datasets, to determine whether findings hold
when applied to new topic areas. For instance, Miwa
[45] reported that a particular approach did not perform
as well on ‘messy’ social science datasets as it did for
‘cleaner’ clinical datasets that had been used elsewhere
(though other enhancements can make up for some of
this deficit)—these sorts of partial replications of the
method are helpful in understanding the cross-review
and cross-disciplinary applicability of the evaluation
findings [45].
Scalability
A further concern is whether some of the approaches
will work on very large datasets—that is, can they be
‘scaled up’ from the small datasets used in the evalua-
tions to the larger datasets that are often encountered in
systematic reviews. The largest evaluation was on a data-
set of more than 1 million citations [31], although that
was a case study (and an extreme one at that!); the sec-
ond largest evaluation was on a dataset of 47,274 [24].
However, the vast majority were conducted on review
datasets that were well below 5,000 items, with the smal-
lest datasets being only 57 items (20 in the training set,
37 in the test set; [64,65]).
Given that the purpose of using such technologies in

systematic reviews is to reduce screening workload, then it
seems appropriate to test them on datasets for which the
workload is large or even unmanageable. Although we can
extrapolate from the smaller datasets to larger reviews,
there is a limit to how much we can assume that the tech-
nologies will be able to detect true positives in such large
(and thereby presumably more diverse) datasets.
The issue of scalability is particularly relevant to the vis-

ual text mining approaches, as discussed earlier in the
paper. Consideration will need to be paid to how to repre-
sent connections between papers visually when many
items are in the dataset; the visual image could be too
overwhelming to be of any use in aiding human informa-
tion processing. Either adaptations to such tools will need
to be made for scaling up, or an upper threshold of num-
ber of items in the dataset might need to be established.

Further information on this topic
Methods such as stream-based active learning are promis-
ing in handling large-scale data instances [81]. Stream ac-
tive learning is closely related to online learning [3.3.4],
but as it does not need to store all the instances in active
learning, it can handle large-scale data instances.

Suitability. Appropriateness of TM for a given review
This systematic review has aimed to identify all the rele-
vant studies concerning the use of text mining for
screening, finding that it is a relatively new field with
many gaps in the evidence base. One significant gap is
the limited range of topics and types of study within the
reviews which have been used to evaluate the text min-
ing methods. On the whole, they are concerned with
identifying RCTs in clinical areas and there are almost
no examples outside the health and biomedical sector
apart from a discrete set in the area of software engin-
eering. This is not surprising, since these are the areas that
text mining for other purposes is most common, but it is
an important area for future research, because general lit-
erature is more challenging to text mine because of the
variability of concepts, text categorisation, etc.
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Bekhuis and Demner-Fushman tested this explicitly in
their study of 2010, looking for non-randomised, as well
as randomised, controlled trials (though still in the
medical domain) [59]. Their findings are promising,
though they are concerned about the possibility of
‘over-fitting’ and the danger of building a classifier that
does not recognise the true scope of relevant studies.
They identify a specific type of SVM classifier and con-
clude that their method may be able to identify non-
randomised studies with a high degree of recall—as long
as the citations on which the machine learning can
‘train’ encapsulate the full range of the potentially rele-
vant studies. Miwa et al. test explicitly the difference in
performance of the same machine learning approaches
between ‘clinical’ and ‘social science’ reviews [45]. They
found that text mining performance was slightly poorer
in the social scientific literature than the clinical domain
and that certain enhancements could improve this.
Wallace and colleagues suggest a method to be used

in review updates which enable reviewers to determine
whether a semi-automated approach is viable [48]. They
recommend a ‘cross-fold validation’ test, whereby the
database of studies from the original review is split into
parts (say, 10) and the classifier successively trained on
90% of the data, leaving 10% for assessing its perform-
ance. Performance is then averaged over the 10 itera-
tions and if acceptable, then the use of automation for
the update of that specific review can be recommended.

Further information on this topic
Most text mining systems used in systematic reviews use
shallow information e.g. bag-of-words and their combina-
tions, e.g., kernels. Natural language processing techniques
such as syntactic parsing can be employed to engineer
more discriminative features. Furthermore, unsupervised
feature learning or dimensionality reduction approaches
can be employed to build feature representations suitable
for specific domains as well as finding queries to relieve
hasty generalisations as mentioned in 3.3.2 [82].

Over-inclusive screeners
The success of most automated approaches relies upon
‘gold standard’ training data; that is, citations that the
machine can assume have been correctly designated as
relevant or irrelevant. Using these data, the machine is
then able to build a model to designate such classifica-
tions automatically. Usually, these gold standard training
data take the form of decisions made by reviewers when
screening a proportion of the studies of interest. Unfor-
tunately, these decisions may not actually be ‘gold stand-
ard’ training data, because reviewers are trained to be
over inclusive, and to retrieve the full text whenever they
are in doubt—even if the most likely final decision is
that it is irrelevant. Such decisions may mislead the
classifier and generate a model which incorrectly classi-
fies irrelevant studies as relevant. Bekhuis et al. acknow-
ledge this as a potential problem, but go on to argue
then that to ‘be worthwhile, a classifier must return per-
formance better than this baseline to ensure reduced
labor’ [60]: a pragmatic way of looking at how machine
learning might potentially assist in systematic reviews.
Frunza et al. also encountered this challenge, finding
that the best way of mitigating the effects of reviewer
over-inclusivity was to base the machine learning on
designations that were the result of two reviewers’ opin-
ions—after disagreements had been resolved [61]. This
solution is clearly only possible when two reviewers are
reviewing every abstract—something which is common,
but by no means universal, practice.

Further information on this topic
A machine learning-based method able to deal with
over-inclusive screening as well as data imbalance is
cost-sensitive learning [83]. Cost-sensitive learning as-
signs misclassification costs to certain types in learning
and adapts machine-learning methods for task-specific
criteria. It is as competitive as or better than sampling
methods for unbalanced datasets [84], and it is also
employed in active learning [85].

Discussion
Summary of key findings
This review asked five research questions, which we have
addressed through synthesising the evidence from 44
evaluations of the use of text mining for reducing
screening workload in systematic reviews.
The first research question related to the state of the

evidence base, which we conclude to be both active and
diverse. The timeline indicates that the field is evolving
rapidly, with new issues being tackled almost every year
since its application to systematic reviews. However,
this also hints at an issue that was elaborated on
throughout this paper—that is, there is almost no repli-
cation between studies or collaboration between re-
search teams, making it difficult to establish any overall
conclusions about best approaches.
The second research question related to the purpose of

using text mining to reduce workload and the methods
used for each purpose. For reducing the number needed to
be screened, it is reasonable to assume that the more inter-
active approach offered by a ranking or prioritisation sys-
tem and the active learning approaches will have greater
user appeal than a strict classifier approach in ‘new’ reviews
(as opposed to review updates). This is because reviewers
might be uncomfortable with handing over too much con-
trol to an automated system. Also, when using a ranking or
prioritisation approach, reviewers are able to search more
sensitively than is currently the norm and screen the same
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number of studies as they currently would; the effort spent
screening manually would thus be focused on those studies
identified as being themost relevant retrieved in the search,
enabling these reviews to identify more relevant studies
than is currently the case.
For using text mining to replace a second human

screener, classifiers were used to make explicit in/out de-
cisions and those decisions were compared with a hu-
man reviewer. This approach is likely to have strong
appeal amongst the systematic review community be-
cause, whilst it reduces the resources required to screen
items, 100% of the items identified through searching
are still viewed by a human screener. This could combat
concerns about false negatives assigned by an automated
screener. A further potential benefit of such a system is
that it ‘could deliver quality assurance both by confirm-
ing concordant decisions and by naming studies associ-
ated with discordant decisions for further consideration’
(Bekhuis [60], p. 9) (One possible weakness of this ap-
proach is that it necessarily assumes that any mistakes
made by the human screener are essentially at random,
and not because of some systematic misapplication of
the inclusion criteria, which might be picked up and ad-
dressed if two reviewers were working in tandem.).
Reducing workload by increasing the rate (or speed) of

screening was a little researched topic, exclusively lim-
ited to the visual data mining approach and largely
championed by one research group. A major limitation
of these evaluations—and potentially for the wider ap-
plicability of these approaches—is that the approach has
only been tested on very small datasets. The largest data-
set consisted of only 261 items to be screened [13]. It is
unclear whether such an approach could be scaled up to
be applied in other disciplines in which thousands of
items might need to be screened, though the authors
argue that upscaling is indeed possible. The efficient cit-
ation assignment approach evaluated by Wallace et al.
[49] may also be promising for larger reviews where the
expertise of the reviewers is known.
Improving workflow efficiency through screening pri-

oritisation is likely to appeal to systematic reviewers as it
allows for reviewers to screen 100% of the titles and ab-
stract but with a range of benefits. Benefits discussed in
the literature included: understanding the inclusion cri-
teria sooner, getting up to speed on new developments
in review updates, starting full-text document retrieval
sooner and starting the data extraction and synthesis
processes in parallel with screening the ‘tail end’ of the
list of items (in which there are expected to be very few
or zero relevant items).
The third research question related to the contextual

problems of applying text mining to systematic review
screening and how they have been addressed in the litera-
ture. We found various attempts to address the
importance of high recall for systematic reviews (vote
counting; specialist algorithms; and human input).
Whilst all evaluations reported good recall, the studies
used different adaptations; so it is impossible to conclude
whether any approach is better than another—and in
which context. However, human input is likely to have
intuitive appeal to systematic reviewers, as it allows for
a human sense-check of the terminology preferences
determined by the machine.
One important distinction to make when evaluating

the utility of machine learning in screening is whether
one is creating a new review or updating and existing
one. Given the existence of the preexisting data for re-
view updates, it is often possible to know in advance the
likely performance of using text mining, enabling re-
viewers to make an informed decision about its potential
in that specific review. Such a situation does not pertain
in new reviews, and the risk of hasty generalisation is a
‘known unknown’ here, as are the risks and benefits of
adopting a semi-automated approach.
The lack of replication and testing outside the biomed-

ical sphere makes it difficult to draw conclusions about
the general effectiveness of these technologies. Certainly,
where technical jargon is utilised, most approaches ap-
pear to offer efficiency savings; and in the few instances
of their application outside the medical domain they
again can be effective, though potentially slightly less so.
The fourth research question considered how the

workload reduction issue has been evaluated. Here, it
was impossible to synthesise study findings quantita-
tively, because each used different technologies in (usu-
ally) different reviews. On the whole, most suggested
that a saving in workload of between 30% and 70%
might be possible (with some a little higher or a little
lower than this), though sometimes the saving in work-
load is accompanied by the loss of 5% of relevant studies
(i.e. a 95% recall).
The fifth research question considered the challenges

to implementation that emerged from reviewing the evi-
dence base. Here, we found few deployed systems, which
limits the ability of reviewers to try out these technolo-
gies, but also, given the limitations in the evidence base
identified above, there is probably a need for specialist
advice whenever they are used in a live review—and cer-
tainly if workload reduction is planned (i.e. if their use
extends beyond prioritising screening). We also found a
lack of replication studies, which makes it difficult to
compare the efficacy of different approaches across re-
view contexts, and few evaluations outside the biomed-
ical domain. Challenges in using such technologies
include questions about how they might scale to large
reviews and how to model accurate classifiers when the
decisions made by reviewers are likely to err on the side
of caution, and hence be over-inclusive.
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Strengths and limitations of this review
To the best of our knowledge, this is the first systematic re-
view that has brought together evidence concerning the use
of text mining for screening in systematic reviews. We have
identified a varied, innovative and potentially extremely im-
portant evidence base—which one day may do much to im-
prove review efficiency and so improve decision-making.
We hope that this review will help the different areas of the
field to ‘speak’ to one another and so facilitate the develop-
ment of the field as a whole.
As there are no other systematic reviews of this area, we

had a broad review question, which encompassed any ap-
proach. This has enabled us to identify the cross-cutting
issues in the field but has limited the quantity of technical
information that we have been able to present. For ex-
ample, a narrower review focused solely on active learning
might be able to delve into the specifics in more detail.
An inevitable limitation due to setting the scope of the

review to evaluations of text mining approaches within
systematic reviews is that relevant research in other
areas is excluded. For example, if we had reviewed all
potentially relevant research about text mining and ac-
tive learning (an almost impossible task!), other tech-
nologies and approaches, beyond those so far evaluated in
systematic reviews, might well have come to light. Whilst
this limitation was impossible to avoid, it is nevertheless a
significant limitation, because only a small subset of pos-
sible approaches to, for example, feature selection/enrich-
ment and distance analytics, have been tested within the
systematic review literature. The field of text mining con-
tains many more possibilities—and some may be more ef-
fective and appropriate than those so far evaluated.
A limitation which applies to any systematic review is

that we may not have managed to find every relevant
study. This was highlighted to us during the peer review
process when another relevant study came to light. This
study was focused on a text mining approach and uti-
lised data from systematic reviews as its test scenario
[71]. There may be other papers like this one which we
have inadvertently missed.

Further possibilities
It is interesting to note that text mining approaches to
support screening have followed the human reviewer’s
initial approach of using titles, abstracts and keywords.
The human reviewer will retrieve full text for further re-
view, but typically text mining approaches so far have
not processed full text in support of the screening
process. There are essentially three issues to consider
here. Firstly, there is the issue of how well a title, ab-
stract and metadata can satisfy a complex information
need. For example, regarding use of an abstract to deter-
mine what claims are being made, Blake found that, in
biomedicine, fewer than 8% of the scientific claims made
in full-text articles were to be found in their abstracts,
which would certainly motivate the need to process full
text [86].
Cohen and colleagues have investigated more widely

the implications for text mining of processing abstracts
as opposed to full-text articles, and moreover mention a
second issue, to do with problems that may arise for sys-
tems in going from the processing of abstracts to the
processing of full text, but note that there are opportun-
ities to be exploited in so doing [87]. Text mining technol-
ogy has, however, improved greatly since that publication.
There are now text mining systems that process large
amounts of full text and that support sophisticated seman-
tic search. For example, Europe PubMed Central, a large
archive for the Life Sciences, showcases on its Labs site a
semantic search system, EvidenceFinder, that is under-
pinned by deep parsing, conducted in a cloud environ-
ment, of some 2.5 m articles to yield over 83 m searchable
facts (http://labs.europepmc.org/evf).
Text mining can increasingly handle deep analysis of

full-text context, at scale, thus it would be natural to
move towards exploiting such a capability in support of
systematic reviews. However, this leads into the third
issue, concerning copyright, licencing and lawful access
to full-text content for text mining purposes. Reviewers
already run into this issue when they find that their in-
stitution does not subscribe to some journal, for ex-
ample. However, even if one’s institution does have the
relevant subscription, licencing terms may explicitly dis-
allow text mining or allow it but place constraints on
use of its results. This is a hot topic, with researchers
claiming that ‘the right to read is the right to mine’
(Open Knowledge Foundation). Open Access publications
are not subject to the same constraints as subscription-
based content; however, there is growing concern amongst
researchers and funding bodies that opportunities are be-
ing lost to advance knowledge and boost innovation and
growth due to restrictive copyright and licencing regimes
that are unsuited to the digital age [88,89]. Most recently,
the UK has passed legislation to legalise text mining for
non-commercial use (http://www.legislation.gov.uk/uksi/
2014/1372/regulation/3/made). There is thus a valuable
opportunity for the systematic reviewing community in
the UK at least to work closely with its text mining com-
munity to exploit the benefits of full-text processing, par-
ticularly to improve screening and to reduce the need for
humans to laboriously move from abstract to full text to
carry out a more specific check for relevance.
The use of automation to assist in study selection is pos-

sibly the most advanced of all the areas where automation
in systematic reviews is being developed; but others range
from writing sections of the report, formulating the review
question and automated data extraction and quality
assessment [90-93].

http://labs.europepmc.org/evf
http://www.legislation.gov.uk/uksi/2014/1372/regulation/3/made
http://www.legislation.gov.uk/uksi/2014/1372/regulation/3/made
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Recommendations
Recommendations for research

� More replications using the same text mining
methods on different datasets are required.

� Likewise, different methods using the same dataset
are also needed in order genuinely to compare
one with another.

� To facilitate the above, data on which evaluations
are based should be made public as often
as possible.

� The testing of the methods reviewed here in other
disciplines is urgently required. For example, the
field of Development Studies may be more
complex and thus demand more of the text
mining (promoting more innovation to overcome
new hurdles).

Recommendations for reviewing practice

� Reviewers should engage with the computer science
community to develop and evaluate methods and
systems jointly.

� Using text mining to prioritise the order in which
items are screened should be considered safe and
ready for use in ‘live’ reviews.

� The use of text mining as a ‘second screener’ may be
used cautiously in the knowledge that the
assumption is that the human reviewer is not
missing relevant studies systematically.

� The use of text mining to eliminate studies
automatically should be considered promising,
but not yet fully proven. In highly technical/
clinical areas, it may be used with a high degree
of confidence; but more developmental and
evaluative work is needed in other disciplines.
Conclusion
Whilst there is a relatively abundant and active evidence
base evaluating the use of text mining for reducing
workload in screening for systematic reviews, it is a di-
verse and complex literature. The vast array of different
issues explored makes it difficult to draw any conclu-
sions about the most effective approach. There are, how-
ever, key messages regarding the complexity of applying
text mining to the systematic review context and the
challenges that implementing such technologies in this
area will encounter. Future research will particularly
need to address: the issue of replication of evaluations;
the suitability of the technologies for use across a range
of subject-matter areas; and the usability and acceptabil-
ity of using these technologies amongst systematic re-
view (non-computer scientist) audiences.
Endnotes
aA ‘method’, in the context of this review, is the applica-

tion of a specific technology or a process within a system-
atic review. This is a somewhat broad definition which
includes, for example, both the use of a classifier to classify
citations as being relevant/irrelevant; and also the ‘active
learning’ approach, which incorporates a classifier as part
of its process. This broad definition reflects the practical
purpose of this review—we are interested in approaches
that can be applied in systematic reviews, and these may
be individual tools, combinations of tools or processes for
using them.

bThe practicalities of implementing text mining in live
reviews are the subject of a current project by the EPPI-
Centre and NaCTeM, which aims to address some of
these issues. Project URL: http://www.ioe.ac.uk/research/
63969.html.
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